K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 4 2022

Gọi H là trung điểm AB, có lẽ từ 2 câu trên ta đã phải chứng minh được \(SH\perp\left(ABCD\right)\)

Do \(\left\{{}\begin{matrix}DM\cap\left(SAC\right)=S\\MS=\dfrac{1}{2}DS\end{matrix}\right.\) \(\Rightarrow d\left(M;\left(SAC\right)\right)=\dfrac{1}{2}d\left(D;\left(SAC\right)\right)\)

Gọi E là giao điểm AC và DH

Talet: \(\dfrac{HE}{DE}=\dfrac{AH}{DC}=\dfrac{1}{2}\Rightarrow HE=\dfrac{1}{2}DE\)

\(\left\{{}\begin{matrix}DH\cap\left(SAC\right)=E\\HE=\dfrac{1}{2}DE\end{matrix}\right.\) \(\Rightarrow D\left(H;\left(SAC\right)\right)=\dfrac{1}{2}d\left(D;\left(SAC\right)\right)=d\left(M;\left(SAC\right)\right)\)

Từ H kẻ HF vuông góc AC (F thuộc AC), từ H kẻ \(HK\perp SF\)

\(\Rightarrow HK\perp\left(SAC\right)\Rightarrow HK=d\left(H;\left(SAC\right)\right)\)

ABCD là hình vuông \(\Rightarrow\widehat{HAF}=45^0\Rightarrow HF=AH.sin45^0=\dfrac{a\sqrt{2}}{4}\)

\(SH=\dfrac{a\sqrt{3}}{2}\), hệ thức lượng:

\(HK=\dfrac{SH.HF}{\sqrt{SH^2+HF^2}}=\dfrac{a\sqrt{21}}{14}\)

\(\Rightarrow d\left(M;\left(SAC\right)\right)=\dfrac{a\sqrt{21}}{14}\)

NV
19 tháng 4 2022

undefined

23 tháng 6 2016

bài này dễ thôi bạn

thay x= x+ k6pi vào hàm số y=f(x)= sin\(\frac{x}{3}\) ta dc

 sin\(\frac{x+k6pi}{3}\) =sin\(\frac{x}{3}+k2pi\) ( vì k2pi  "số chẵn lần của π" nên có thể bỏ được)

suy ra sin\(\frac{x}{3}\) =sin\(\frac{x}{3}\) =f(x)  ( dpcm)

22 tháng 4 2016

Thiểu năng hết rồi à? Chữ này xấu nhưng không đến mức không đọc được.

P/s: chưa học sin cos nên ko rõ

22 tháng 4 2016

Chữ bạn "Đẹp" đấy, mk ko hiểu gì cả

NV
19 tháng 4 2022

Tức là câu 2, 3 của bài hình không gian đúng không em?

19 tháng 4 2022

Đúng rồi ạ , Thầy giúp em với ạ !

29 tháng 3 2017

cau 12:

gọi E là trung điểm AB \(\Rightarrow\)MẸ//BC ; và EN// AC do do ME=BD/2 ;NE= AC/2

\(\Rightarrow\left[\widehat{BD;AC}\right]=\left[\widehat{ME;EN}\right]=90^0\)

\(\Delta MEN\)vuông tại E\(\Rightarrow MN^2=ME^2+NE^2=\left(\dfrac{3a}{2}\right)^2+\left(\dfrac{a}{2}\right)^2=\left(\dfrac{10a^2}{4}\right)\Rightarrow MN=\dfrac{a\sqrt{10}}{2}\)

​chọn đáp án AVectơ trong không gian, Quan hệ vuông góc

29 tháng 3 2017

vẽ hình ở ngoài rồi dán vào ko biết tại sao nó lại thụt xuống dướileuleu

14 tháng 9 2017

câu 2a đó ạ

15 tháng 9 2017

dùng ông thức hạ bậc

cos2a=\(\dfrac{1+cos2a}{2}\)

pt<=>1+cos(4x+\(\dfrac{2\Pi}{3}\))-3sin(2x+\(\dfrac{5\Pi}{6}\))+1=0

<=>-\(\dfrac{1}{2}\)cos4x-\(\dfrac{\sqrt{3}}{2}\)sin4x+\(\dfrac{3\sqrt{3}}{2}\)sin2x-\(\dfrac{3}{2}\)cos2x+2=0

<=>(-\(\dfrac{1}{2}\)cos4x+\(\dfrac{3\sqrt{3}}{2}\)sin2x+2)+(-\(\sqrt{3}\)sin2x.cos2x-\(\dfrac{3}{2}\)cos2x)=0

<=>[-\(\dfrac{1}{2}\)(1-2sin22x)+\(\dfrac{3\sqrt{3}}{2}\)sin2x+2)-cos2x.(\(\sqrt{3}\)sin2x+\(\dfrac{3}{2}\))=0

<=>(sin22x+\(\dfrac{3\sqrt{3}}{2}\)sin2x+\(\dfrac{3}{2}\))-cos2x.(\(\sqrt{3}\)sin2x+\(\dfrac{3}{2}\))=0

<=>(sin2x+\(\dfrac{\sqrt{3}}{2}\))(sin2x+\(\sqrt{3}\))-cos2x.(sin2x+\(\dfrac{\sqrt{3}}{2}\))=0

<=>(sin2x+\(\dfrac{\sqrt{3}}{2}\))(sin2x-cos2x+\(\sqrt{3}\))=0

tới đây bạn tự giải nhé

14 tháng 10 2017

1/cos^2x = 1 + tan^2x điều kiện cos^2x khác 0

14 tháng 10 2017

Kết quả ra tanx = 2 hoặc tanx = -√3