Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình được cô phát nhiều đề khảo sát lắm, nhưng ko biết đề nào mới được ý !!!
a.
\(\frac{1}{2\times3}=\frac{1}{6}\)
\(\frac{1}{2}-\frac{1}{3}=\frac{3}{6}-\frac{2}{6}=\frac{1}{6}\)
\(\Rightarrow\frac{1}{2\times3}=\frac{1}{2}-\frac{1}{3}\)
b.
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+.....+\frac{1}{2005\times2006}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{2005}-\frac{1}{2006}\)
\(=1-\frac{1}{2006}\)
\(=\frac{2005}{2006}\)
Chúc bạn học tốt
a,Ta có \(\dfrac{1}{2.3}\)=\(\dfrac{1}{6}\)
\(\dfrac{1}{2}-\dfrac{1}{3}\)=\(\dfrac{3}{6}-\dfrac{2}{6}\)=\(\dfrac{1}{6}\)
=>\(\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3}\)
b, \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2005.2006}\)
=\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{2005}-\dfrac{1}{2006}\)
=\(\dfrac{1}{1}-\dfrac{1}{2006}\)
=\(\dfrac{2006}{2006}-\dfrac{1}{2006}\)
=\(\dfrac{2005}{2006}\)
Ta có
\(\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{\left(n+1\right)-n}{n.\left(n+1\right)}=\dfrac{1}{n.\left(n+1\right)}\)
Vậy \(\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3}\)
Quá dễ luôn đó
dễ quá mà