Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
1 (x+3)2=x2+6x+9
2
a, 2x2(3x-5x3)+10x5-5x3=6x3-10x5+10x5-5x3=x3
b, (x+3)(x2-3x+9)+(x-9)(x+3)=(x3+27)+(x2-6x-27)=x3+x2-6x
Bài 2:
a, x2-25x=0
\(\Leftrightarrow x\left(x-25\right)=0\)
\(\Leftrightarrow\begin{cases}x=0\\x-25=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=0\\x=25\end{cases}\)
b, (4x-1)2-9=0
\(\Leftrightarrow\left(4x-1-3\right)\left(4x-1+3\right)=0\)
\(\Leftrightarrow\left(4x-4\right)\left(4x+2\right)=0\)
\(\Leftrightarrow4\left(x-1\right)2\left(2x+1\right)=0\)
\(\Leftrightarrow8\left(x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\begin{cases}x-1=0\\2x+1=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=1\\x=\frac{-1}{2}\end{cases}\)
Bài 3:
a, 3x2-18x+27=3(x2-6x+9)=3(x-3)2
b, xy-y2-x+y=y(x-y)-(x-y)=(y-1)(x-y)
c, x2-5x-6=x2-6x+x-6=x(x-6)+(x-6)=(x+1)(x-6)
Bài 4:
a, ( 12x3y3-3x2y3+4x2y4):6x2y3=(12x3y3:6x2y3)-(3x2y3:6x2y3)+(4x2y4:6x2y3)
=2x-1/2 + 2/3y
b, bạn ơi mình không biết cách vẽ đường kẻ để chia ý , nếu bạn biết thì chỉ cho mình rồi mình làm cho
Bài 5 :
b, A = x(2x-3)
A= 2x2-3x
A= 2(x2-3/2x)
A= 2(x2-2x3/4+9/16-9/16)
A=2[(x-3/4)2-9/16]
A=2(x-3/4)2-9/8
A=2(x-3/4)2+(-9/8)
Vì (x-3/4)2 \(\ge\)0 \(\forall x\)
-> 2(x-3/4)2 \(\ge0\forall x\)
-> 2(x-3/4)2+(-9/8)\(\ge-\frac{9}{8}\forall x\)
Vậy MinA= -9/8
Bài 1:
1. Khai triển hằng đẳng thức
(x+3)2 = x2+6x+9
2. Thực hiện phép tính
a) 2x2(3x-5x3)+10x5-5x3
=6x3-10x5+10x5-5x3
=x3
b)(x+3)(x2-3x+9)+(x-9)(x+3)
=(x3+27)+(x2+3x-9x-27)
=x3+27+x2+3x-9x-27
=x3+x2-6x
Bài 2:
a) x2-25x=0
\(\Leftrightarrow\)x(x-25)=0
\(\Leftrightarrow\) \(\left[\begin{matrix}x=0\\x-25=0\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}x=0\\x=25\end{matrix}\right.\)
Vậy x=0 hoặc x=25
b)(4x-1)2 - 9=0
\(\Leftrightarrow\)(4x-1+3)(4x-1-3)=0
\(\Leftrightarrow\)(4x+2)(4x-4)=0
\(\Leftrightarrow\)2(2x+1)(2x-2)=0
\(\Leftrightarrow\left[\begin{matrix}2x+1=0\\2x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}x=\frac{-1}{2}\\x=1\end{matrix}\right.\)
Vậy x=1 hoặc x=\(\frac{-1}{2}\)
Bài 3:
a) 3x2-18x+27
=3(x2-6x+9)
=3(x-3)2
b) xy-y2-x+y
=(xy-y2)-(x-y)
=y(x-y)-(x-y)
=(x-y)(y-1)
c) x2-5x-6
=x2-6x+x-6
=(x2-6x)+(x-6)
=x(x-6)+(x-6
=(x-6)(x+1)
Bài 4:
a) (12x3y3-3x2y3+4x2y4) : 6x2y3
=x2y3(12x-3+4y): 6x2y3
=(12x-3+4y) : 6
= (12x : 6)-(3 : 6)+(4y : 6)
=2x-\(\frac{1}{2}\)+\(\frac{2y}{3}\)
b) (6x3-19x2+23x-12) : (2x-3)
=(3x2-5x+4)(2x-3) : (2x-3)
=3x2-5x+4
Ta có:
9999 = 9924 . 4 + 3 = ( 994)24 . 993 = (...1)24 = (...1) . 993 = (...1) . (...9) = (...9)
Vậy chữ số tận cùng của 9999 là 9.
HT~
a) \(\left(a^2-4\right)\left(a^2+4\right)\)
\(=a^4-8\)
c) \(\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\)
=\(\left(a^2-b^2\right)\left(a^2+b^2\right)=a^4-b^4\)
d) \(\left(a-b+c\right)\left(a+b+c\right)\)
=\(a^2-\left(b+c\right)^2\)
e) \(\left(x+2-y\right)\left(x-2-y\right)\)
=\(x-\left(2-y\right)\)
mik lm tắt có gì sai cho mik xin lỗi
( a2 - 4 )( a2 + 4 ) = a4 - 16
( x3 - 3y )( x3 + 3y ) = x6 - 9y2
( a - b )( a + b )( a2 + b2 )( a4 + b4 ) = ( a2 - b2 )( a2 + b2 )( a4 + b4 ) = ( a4 - b4 )( a4 + b4 ) = a8 - b8
( a - b + c )( a + b + c ) = ( a + c )2 - b2 = a2 - b2 + c2 + 2ac
( x + 2 - y )( x - 2 - y ) = ( x - y )2 - 22 = x2 - 2xy + y2 - 4
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
\(\left(a+b-c\right)^2=a^2+b^2+c^2+2ab-2bc-2ac\)
\(\left(a-b-c\right)^2=a^2+b^2+c^2-2ab+2bc-2ac\)
\(\left(x-2y+1\right)^2=x^2+4y^2+1-4xy-4y+2x\)
\(\left(3x+y-2\right)^2=9x^2+y^2+4+6xy-12x-4y\)
a, \(\left(y-2\right)\left(y+2\right)\left(y^2+4\right)-\left(y+3\right)\left(y-3\right)\left(y^2+9\right)\)
\(=\left(y^2-4\right)\left(y^2+4\right)-\left(y^2-9\right)\left(y^2+9\right)\)
\(=y^4-16-y^4+81=65\)
b, \(2\left(x^2-xy+y^2\right)\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)-2\left(x^6-y^6\right)\)
\(=2\left(x^3-y^3\right)\left(x^3+y^3\right)-2\left(x^6-y^6\right)\)
\(=2\left(x^6-y^6\right)-2\left(x^6-y^6\right)=0\)
Bài 309. Chứng minh rằng ab + 1 là số chính phương với a = 11…12(n chữ số 1),
b = 11…14(n chữ số 1).
Đặt \(a=x+1,b=x+3\)với \(x=11...1\)(\(n\)chữ số \(1\))
\(ab+1=\left(x+1\right)\left(x+3\right)+1=x^2+4x+3+1\)
\(=x^2+4x+4=\left(x+2\right)^2\)
Do đó ta có đpcm.
Đặt \(d=11...1\)(\(n\)chữ số \(1\)) suy ra \(10^n=9d+1\).
\(a=10^n.d+d=\left(9d+1\right).d+d=9d^2+2d\)
\(b=10d+1\)
\(c=6d\)
\(a+b+c+8=9d^2+2d+10d+1+6d+8\)
\(=9d^2+18d+9=\left(3d+3\right)^2\)là số chính phương.
Mình ko có hiểu??
Bạn ghi gì kì thế? Khó hỉu?