Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Ta có: \(3n^3+10n^2-5⋮3n+1\)
\(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow3n\in\left\{0;-3;3\right\}\)
hay \(n\in\left\{0;-1;1\right\}\)
a: Xét tứ giác HNCE có
M là trung điểm của HC
M là trung điểm của NE
Do đó: HNCE là hình bình hành
3:
a: Xét ΔABC có M,N lần lượt là trung điểm của AC,AB
nên MN là đường trung bình
=>MN//BC và MN=BC/2
Xét tứ giác BNMC có
NM//BC
góc NBC=góc MCB
=>BNMC là hình thang cân
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH chung
=>ΔAHB=ΔAKC
=>AH=AK
Xét ΔABC có AH/AC=AK/AB
nên KH//BC
Xét tứ giác BKHC có
HK//BC
HB=KC
=>BKHC là hình thang cân
2:
a: ABCD là hình thang cân
=>góc D=góc C=70 độ
góc A=góc B=180-70=110 độ
b: Xét ΔAHD vuông tại H và ΔBKC vuông tại K có
AD=BC
góc D=góc C
=>ΔAHD=ΔBKC
=>DH=CK
Xét △ACD và △BDC có:
\(\begin{matrix}AD=BC\left(gt\right)\\\hat{D}=\hat{C}\left(gt\right)\\CD\text{ }chung\end{matrix}\Rightarrow\Delta ACD=\Delta BDC\left(c.c.c\right)\Rightarrow\hat{ACD}=\hat{BDC}\text{ }hay\text{ }\text{ }\hat{ICD}=\hat{IDC}\)
⇒ △ICD cân tại I ⇒ \(ID=IC\left(1\right)\)
△KCD có: \(\hat{C}=\hat{D}\) ⇒ △KCD cân tại K ⇒ \(KD=KC\left(2\right)\)
Từ (1) và (2). Suy ra KI là đường trung trực của CD (3)
Tương tự ta cũng có: \(IA=IB;KA=KB\). Suy ra KI là đường trung trực của AB (4)
Từ (3) và (4). Vậy: KI là đường trung trực của AB và CD
1:
a: =x^2+3x+4x+12
=x(x+3)+4(x+3)
=(x+3)(x+4)
b: =4x^2-4x-5x+5
=4x(x-1)-5(x-1)
=(x-1)(4x-5)
c: =2x^2-3x-4x+6
=x(2x-3)-2(2x-3)
=(2x-3)(x-2)
3:
a: =2x^2-6xy+xy-3y^2
=2x(x-3y)+y(x-3y)
=(x-3y)(2x+y)
b: =x^2+3xy-xy-3y^2
=x(x+3y)-y(x+3y)
=(x+3y)*(x-y)
c: =6x^2+4xy-3xy-2y^2
=2x(3x+2y)-y(3x+2y)
=(3x+2y)(2x-y)
a: XétΔAHB vuông tại H và ΔAKC vuông tạiK có
góc A chung
=>ΔAHB đồng dạng với ΔAKC
b: góc BKC=góc BHC=90 độ
=>BKHC nội tiếp
=>góc AKH=góc ACB
mà góc A chung
nên ΔAKH đồng dạng với ΔACB