Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử x>y ta có :
\(\hept{\begin{cases}90=2\cdot3^2\cdot5\\1350=2.3^3.5^2\end{cases}}\)
vậy ta có hai số (x,y) là \(\hept{\begin{cases}x=3^2\cdot5\\y=2\cdot3\cdot5\end{cases}\text{ hoặc :}\hept{\begin{cases}x=2\cdot3^2\cdot5\\y=3\cdot5\end{cases}}}\)
tương tự với y>x
x - {[-x+(x+3)]} + [(x+3)-(x-2)] = 0
<=> x - (-x+x+3) + (x+3-x+2) = 0
<=> x - 3 + 5 = x + 2 = 0
<=> x = -2
\(S=\dfrac{1}{2^2}+\dfrac{1}{\left(2.2\right)^2}+\dfrac{1}{\left(2.3\right)^2}+...+\dfrac{1}{\left(2.10\right)^2}\)
\(=\dfrac{1}{2^2}+\dfrac{1}{2^2.2^2}+\dfrac{1}{2^2.3^2}+...+\dfrac{1}{2^2.10^2}\)
\(=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{10^2}\right)\)
\(< \dfrac{1}{2^2}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}\right)\)
\(=\dfrac{1}{4}\left(1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(=\dfrac{1}{4}\left(2-\dfrac{1}{10}\right)< \dfrac{1}{4}.2=\dfrac{1}{2}\) (đpcm)
=101-102-103+104-105-106+107-108+109+110
= (101+104+107+109+110)-(102+103+105+106+108)
=701-704
=-3
còn cái nịt