K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^2+y^2+1=xy-x-y\Leftrightarrow2x^2+2y^2+2=2xy-2x-2y\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2=0\Leftrightarrow x=y=-1\)

\(A=\frac{1}{xy}+2\left(x+y\right)=\frac{1}{\left(-1\right)\left(-1\right)}+2\left[\left(-1\right)+\left(-1\right)\right]=\frac{-7}{2}\)

nhấn vào đúng 0 sẽ ra kết quả mình làm bài này rồi

10 tháng 2 2016

lm đi r mk cho

10 tháng 2 2016

câu này khó thế cậu 

10 tháng 2 2016

sorry mình không biết câu này

7 tháng 4 2019

CÁC BẠN ƠI GIẢI NHANH MK VS ĐANG CẦN GẤP

20 tháng 3 2020

cái này bạn áp dụng hằng đẳng thức đáng nhớ số 1
(x-y)^2+(x^3-y^2)^2+6xy=36+(y^2-x^3)^2


(x^2 + y^2 - 2xy) + (x^6 + y^4 - 2x^3*y^2) + 6xy = 36 + (y^4 + x^6 - 2x^3*y^2)   (Vì nó bằng nên lược bớt)


x^2 + y^2 - 2xy + 6xy = 36

x^2 + y^2 + 4xy = 36

x^2 + y^2 + 2xy + 2xy = 36

(x + y)^2 + 2xy = 36


 

20 tháng 11 2021

\(\dfrac{xy}{x+y}=\dfrac{yz}{y+z}=\dfrac{zx}{z+x}\\ \Rightarrow\dfrac{x+y}{xy}=\dfrac{y+z}{yz}=\dfrac{z+x}{zx}\\ \Rightarrow\dfrac{1}{y}+\dfrac{1}{x}=\dfrac{1}{z}+\dfrac{1}{y}=\dfrac{1}{x}+\dfrac{1}{z}\\ \Rightarrow\dfrac{1}{x}=\dfrac{1}{y}=\dfrac{1}{z}\\ \Rightarrow x=y=z\)

\(\Rightarrow P=\dfrac{xy+yz+zx}{x^2+y^2+z^2}=\dfrac{x^2+x^2+x^2}{x^2+x^2+x^2}=1\)

20 tháng 11 2021

Cảm ơn anh rất nhìu

1 tháng 1 2016

xy+x+y=8

<=>x(y+1)+y+1=9

<=>(y+1)(x+1)=9

=>lập bảng làm tiếp

1 tháng 1 2016

a/ chuyển về (3-x).(y+3)=9  (dài dòng nên k làm đâu)

b/ xy+x+y=8

x.(y+1)+y+1=9

x.(y+1)+(y+1)=9

(x+1).(y+1)=9

c/(x,y)={(3;5),(4;4)}