Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x^3+y^3}{6}=\dfrac{x^3-2y^3}{4}\\ \Rightarrow4x^3+4y^3=6x^3-12y^3\\ \Rightarrow2x^3=16y^3\\ \Rightarrow x^3=8y^3\\ \Rightarrow x=2y\)
Mà \(x^6\cdot y^6=64\Rightarrow\left(2y\right)^6\cdot y^6=64\Rightarrow64\cdot y^{12}=64\)
\(\Rightarrow y^{12}=1\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=2\\y=-1\Rightarrow x=-2\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(2;1\right);\left(-2;-1\right)\)
a) \(\left|\dfrac{2}{7}\right|\) = \(\dfrac{2}{7}\)
b) \(\left|\dfrac{-5}{6}\right|\) = \(\dfrac{5}{6}\)
c) \(\left|4\dfrac{2}{3}\right|\) = \(4\dfrac{2}{3}\)
d) \(\left|-3,41\right|\) = \(3,41\)
Em chỉ cần đổi số 2015 -----> 2012
Câu hỏi của Phạm Hải Yến - Toán lớp 7 - Học toán với OnlineMath
\(\hept{\begin{cases}x+y=4\\\left|x+1\right|+\left|y-2\right|=3\end{cases}}\)
Vì \(\left|x+1\right|\ge0;\left|y-2\right|\ge0\)
=>\(\left|x+1\right|+\left|y-2\right|\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x+y=4\\x+1+y-2=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=4\\x+y=4\end{cases}}\)
Vậy x=4-y ; y=4-x
áp dụng BĐT giá trị tuyệt đối ta có:
\(\left|x+1\right|+\left|y-2\right|\ge\left|x+y+1-2\right|=3\)
dấu ''='' xảy ra khi và chỉ khi \(\left(x+1\right)\left(y-2\right)\ge0\)
\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x+1\ge0\\y-2\ge0\end{cases}}\\\hept{\begin{cases}x+1< 0\\y-2< 0\end{cases}}\end{cases}}\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x>0\\y>1\end{cases}}\\\hept{\begin{cases}x< -1\\y< 2\end{cases}}\left(loai\right)\end{cases}}\)từ chỗ đó tự làm được rồi chứ? xét 2 trường hợp 2 thừa số cùng âm hoặc cùng dương
\(\frac{-3\left(x+4\right)}{3\left(4-x\right)}=-\frac{2}{3}\)
\(\Rightarrow\frac{3\left(x+4\right)}{3\left(4-x\right)}=\frac{2}{3}\)
\(\Rightarrow3\left(x+4\right)3=3\left(4-x\right)2\)
\(\Rightarrow9\left(x+4\right)=6\left(4-x\right)\)
\(\Rightarrow9x+36=24-6x\)
\(\Rightarrow6x+9x=24-36\)
\(\Rightarrow15x=-12\Rightarrow x=\frac{-12}{15}=\frac{-4}{5}\)