Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ pt(1) ta có được (x - 2y)(x - y - 2)=0
với x=2y thì thay vào ta được ( 2y^2 + y - 2)(4y^2 - 2y - 5)=0
với x - y =2 thì ta có (x^2 - 5)^2 = 9
phần còn lại tự làm vậy
Bài làm:
Δ ABC vuông tại A?
Ta có: \(\sin B=\frac{AC}{BC}=\frac{3}{5}\) <=> \(\frac{AC}{3}=\frac{BC}{5}=k\) \(\left(k\inℕ^∗\right)\)
=> \(AB^2=BC^2-CA^2=25k^2-9k^2=16k^2\)
=> \(AB=4k\)
Từ đây ta có thể dễ dàng tính được:
\(\cos B=\frac{AB}{BC}=\frac{4}{5}\) ; \(\tan B=\frac{AC}{AB}=\frac{3}{4}\) ; \(\cot B=\frac{AB}{AC}=\frac{4}{3}\)
\(sin^2b+cos^2b=1\)
\(\left(\frac{3}{5}\right)^2+cos^2b=1\)
\(\frac{9}{25}+cos^2b=1\)
\(cos^2b=\frac{16}{25}\)
\(cosb=\pm\sqrt{\frac{16}{25}}=\pm\frac{4}{5}\)
\(tanb=\frac{sinb}{cosb}=\orbr{\begin{cases}\frac{\frac{3}{5}}{\frac{4}{5}}=\frac{3}{4}\\\frac{\frac{3}{5}}{\frac{-4}{5}}=\frac{-3}{4}\end{cases}}\)
\(cotb=\frac{1}{tanb}=\orbr{\begin{cases}\frac{1}{\frac{3}{4}}=\frac{4}{3}\\\frac{1}{\frac{-3}{4}}=\frac{-4}{3}\end{cases}}\)
\(\frac{693432080}{2008}\le a\le\frac{693432989}{2008}\)
345334 < a \(\le\)345335
=> a = 345335 => số cần tìm 693432680 vậy x = 6 và y = 0
Ta có :
\(\frac{a^6}{a^3+a^2b+ab^2}+\frac{b^6}{b^3+b^2c+bc^2}+\frac{c^6}{c^3+ac^2+a^2c}\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+a^2b+ab^2+b^3+b^2c+bc^2+c^3+ca^2+c^2a}\)
( BĐT ..... )
TA đi cm : \(a^3+ab^2+a^2b+b^3+b^2c+bc^2+c^3+ac^2+a^2c\) \(\le3\left(a^3+b^3+c^3\right)\)
(*) CM : \(a^2b+ab^2=ab\left(a+b\right)\le a^3+b^3\) ( cái này tự cm )
Tương tự bc^2 ; b^2c ; ca^2 ; c^2a ...
=>\(a^3+ab\left(a+b\right)+b^3+bc\left(b+c\right)+c^3+ac\left(a+c\right)\le a^3+a^3+b^3+b^3+b^3+c^3+c^3+a^3+c^3\)
= 3 (a^3 + b^3 + c^3 )
BĐT được cm .
Dấu = xảy ra khi a = b= c
\(\sqrt[3]{-64000}\)
=\(\sqrt[3]{-40^3}\)
=-40
k mk nha
---------------------------------------------------------------------------------------------END-----------------------------------------------------------------------------------------------
------------------------------------------------- -----------------------------------------------------------------
=================================================
=======================
Đồng ý nha!
ok bạn ,mk nhanh nhất nè