\(\frac{x^2-2x+2018}{x^2}\) Tìm x để A nhỏ nhất 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2018

\(A=1-2.\frac{1}{x}+2018.\frac{1}{x^2}\)                                                                                                                                                                   \(=2018\left(\frac{1}{x^2}-2.\frac{1}{2018.x}+\frac{1}{2018}\right)\)                                                                                                                                                 \(=2018\left(\frac{1}{x^2}-2.\frac{1}{2018.x}+\frac{1}{2018^2}-\frac{1}{2018^2}+\frac{1}{2018}\right)\)                                                                                              \(=2018\left(\left(\frac{1}{x^2}-\frac{1}{2018}\right)^2-\frac{2007}{2008}\right)\)                                                                                                                                          \(=2018\left(\frac{1}{x^2}-\frac{1}{2018}\right)^2-\frac{2007.2018}{2018^2}\)                                                                                                                                 \(=2018\left(\frac{1}{x^2}-\frac{1}{2018}\right)^2-\frac{2007}{2008}\)                                                                                                                                      vì \(2018\left(\frac{1}{x^2}-\frac{1}{2018}\right)^2\ge0\)                                                                                                                                                             \(\Rightarrow MinA=-\frac{2007}{2008}\Leftrightarrow\left(\frac{1}{x^2}-\frac{1}{2018}\right)^2=0\)                                                                                                                        \(\Leftrightarrow\frac{1}{x^2}=\frac{1}{2018}\Leftrightarrow x^2=2018\Leftrightarrow x=\sqrt{2018}\)

28 tháng 4 2018

mới lần đầu mình làm nên chinh bày  sai thông cảm nha

24 tháng 6 2019

Ta có: \(A=9x^2+\frac{6}{5}x+9\Leftrightarrow A=3x.3x+\frac{3}{5}x+\frac{3}{5}x+\frac{9}{225}+\frac{2016}{225}\)

\(\Leftrightarrow A=3x.3x+3x.\frac{3}{15}+\frac{3}{15}.3x+\frac{3}{15}.\frac{3}{15}+\frac{2016}{225}\)

\(\Leftrightarrow A=3x\left(3x+\frac{3}{15}\right)+\frac{3}{15}\left(3x+\frac{3}{15}\right)+\frac{2016}{225}=\left(3x+\frac{3}{15}\right)\left(3x+\frac{3}{15}\right)+\frac{2016}{225}=\left(3x+\frac{3}{15}\right)^2+\frac{2016}{225}\)

Do \(\left(3x+\frac{3}{15}\right)^2\ge0\Rightarrow\left(3x+\frac{3}{15}\right)^2+\frac{2016}{225}\ge\frac{2016}{225}\Leftrightarrow A\ge\frac{2016}{225}\)

Dấu "=" xảy ra khi: \(\left(3x+\frac{3}{15}\right)^2=0\Leftrightarrow3x+\frac{3}{15}=0\Leftrightarrow3x=-\frac{3}{15}\Leftrightarrow x=-\frac{1}{15}\)

Vậy GTNN của biểu thức \(A\)là \(\frac{2016}{225}\)tại \(x=-\frac{1}{15}.\)

24 tháng 6 2019

\(Â=9\left(x^2+\frac{2}{15}x\right)+9=9\left(x^2+2xxx\frac{1}{15}+\frac{1}{15^2}\right)+9-9x\frac{1}{15^2}\\ =9\left(x+\frac{1}{15}\right)^2+\frac{224}{25}\)

A >= 224/25 

Dấu bằng xảy ra khi và chỉ khi x = -1/5

10 tháng 3 2020

ĐKXĐ : \(x\ne\pm1\)

a) Ta có : 

\(P=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\)

\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\frac{\left(x-1\right)\left(x+1\right)+x+2-x^2}{x\left(x-1\right)}\right)\)

\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\frac{x+1}{x\left(x-1\right)}\right)\)

\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\frac{x\left(x-1\right)}{x+1}=\frac{x^2}{x-1}\)

Vậy : \(P=\frac{x^2}{x-1}\)

b) Ta có : \(x^2+2x-3=0\)

\(\Leftrightarrow x^2+3x-x-3=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)

\(\Leftrightarrow x=-3\) ( Do \(x=1\) không thỏa mãn ĐKXĐ )

Thay \(x=-3\) vào P ta có :

\(P=\frac{\left(-3\right)^2}{-3-1}=\frac{9}{-4}=-\frac{9}{4}\)

Vậy : \(P=-\frac{9}{4}\) với x thỏa mãn đề

c)  Phải là : \(x>1\) nhé bạn :

Ta có :

\(P=\frac{x^2}{x-1}=\frac{x^2-1+1}{\left(x-1\right)}=\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)}+\frac{1}{x-1}=x+1+\frac{1}{x-1}\)

\(=\left(x-1+\frac{1}{x-1}\right)+2\)

Ta có : \(x>1\Rightarrow x-1>0,\frac{1}{x-1}>0\)

Áp dụng BĐT AM-GM cho 2 số dương ta có :

\(x-1+\frac{1}{x-1}\ge2\)

Do đó : \(P\ge2+2=4\)

Dấu "="xảy ra \(\Leftrightarrow\left(x-1\right)^2=1\Leftrightarrow x=2\) ( Do \(x>1\) )

Vậy : GTNN của P là 4 tại \(x=2\)

bài này mình cux ko bt làm

24 tháng 11 2019

a) Ta có: \(2x^2+2x+3=\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\frac{1}{\sqrt{2}}+\frac{1}{2}+\frac{5}{2}\)

\(=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)

\(\Rightarrow S\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)

Vậy \(S_{max}=\frac{6}{5}\Leftrightarrow\sqrt{2}x+\frac{1}{\sqrt{2}}=0\Leftrightarrow x=-\frac{1}{2}\)

b) Ta có: \(3x^2+4x+15=\left(\sqrt{3}x\right)^2+2.\sqrt{3}x.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{41}{3}\)

\(=\left(\sqrt{3}x+\frac{2}{\sqrt{3}}\right)^2+\frac{41}{3}\ge\frac{41}{3}\)

\(\Rightarrow T\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)

Vậy \(T_{max}=\frac{15}{41}\Leftrightarrow\sqrt{3}x+\frac{2}{\sqrt{3}}=0\Leftrightarrow x=\frac{-2}{3}\)

24 tháng 11 2019

c) Ta có: \(-x^2+2x-2=-\left(x^2-2x+1\right)-1\)

\(=-\left(x-1\right)^2-1\le-1\)

\(\Rightarrow V\ge\frac{1}{-1}=-1\)

Vậy \(V_{min}=-1\Leftrightarrow x-1=0\Leftrightarrow x=1\)

d) Ta có: \(-4x^2+8x-5=-\left(4x^2-8x+5\right)\)

\(=-\left(4x^2-8x+4\right)-1\)

\(=-\left(2x-2\right)^2-1\le-1\)

\(\Rightarrow X\ge\frac{2}{-1}=-2\)

Vậy \(X_{min}=-2\Leftrightarrow2x-2=0\Leftrightarrow x=1\)

13 tháng 3 2020

bạn ơi bạn kiểm tra lại đề thêm lần nữa xem có sai ko ?

13 tháng 3 2020

câu a mình rút gọn ra:

\(A=\frac{5-3x}{\left(2x-3\right)\left(x-1\right)}.\frac{x}{5+3x}\)

tới đây hết rút được rồi