Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
\(=\frac{a^3+2a^2+2a+1-2a-2}{a^3+2a^2+2a+1}\)
\(=\frac{a^3+2a^2+2a+1}{a^3+2a^2+2a+1}-\frac{2a-2}{a^3+2a^2+2a+1}\)
\(=1-\frac{2a-1}{a^3+2a^2+2a+1}\)
Đặt biểu thức là A.
Ta có:
\(\frac{\left(a^3+a^2\right)+\left(a^2+1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)}=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a+1\right)}{a^2\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\).
=\(\frac{a^3+a^2+a^2-1}{a^3+a^2+a^2+a+a+1}=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^3+a^2+a^2-1}{a^3+a^2+a^2+a+a+1}=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}\)
\(A=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right).\left(a^2+a-1\right)}{\left(a+1\right).\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
Vậy A=..................
A=\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
A=\(\frac{a^3+2a^2+1-2}{a^3+2a^2+1+2a^2}\)
A=\(\frac{a^3+2a^2+1}{a^3+2a^2+1}+\frac{-2}{a^3+2a^2+1+2a^2}\)
A=\(1+\frac{-2}{a^3+2a^2+1+2a^2}\)
\(\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a-1}\)
\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
\(=\frac{a^3+a^2+a^2-1}{a^3+a^2+a^2+a+a+1}\)
\(=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a-1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}\)
\(=\frac{\left(a^2+a-1\right)\left(a+1\right)}{\left(a^2+a+1\right)\left(a+1\right)}\)
\(=\frac{a^2+a-1}{a^2+a+1}\)
a)
$A=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a-1}$A=(a3+a2)+(a2−1)(a3+a2)+(a2+a)+(a+1) =a2(a+1)+(a+1)(a+1)a2(a+1)+a(a+1)+(a+1) =(a+1)(a2+a−1)(a+1)(a2+a+1) =a2+a−1a2+a−1
b) gọi d = ƯCLN (a2 + a - 1; a2 + a +1 )
=> a2 + a - 1 chia hết cho d
a2 + a +1 chia hết cho d
=> (a2 + a + 1) - (a2 + a - 1) chia hết cho d => 2 chia hết cho d
=> d = 1 hoặc d = 2
Nhận xét: a2 + a -1 = a.(a+1) - 1 . Với số nguyên a ta có a(a+1) là tích 2 số nguyên liên tiếp => a.(a+1) chia hết cho 2
=> a(a+1) - 1 lẻ => a2 + a - 1 lẻ
=> d không thể = 2
Vậy d = 1 => đpcm
muo gio hon thi vao CHTT
A=\(\frac{a^3+a^2+a^2-1}{a^3+1+2a\left(a+1\right)}=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{\left(a+1\right)\left(a^2-ab+b^2\right)+2a\left(a+1\right)}=\)
=\(\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2-ab+b^2+2a\right)}=\frac{a^2+a-1}{a^2-ab+b^2+2a}\)
\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^3+a^2+a^2-1}{a^3+a^2+a^2+a+a+1}=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}\)
\(A=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right).\left(a^2+a-1\right)}{\left(a+1\right).\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
Vậy \(A=\frac{a^2+a-1}{a^2+a+1}\)
1 8892219