\(A=\frac{8^{18}+1}{8^{^{19}}+1}vàB=\frac{8^{^{25}}+1}{8^{^{24}}+1}.sosánh\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2017

ta có A= \(\frac{8^{18}+1}{8^{19} +1}\)=> 8A=\(\frac{8^{19}+8}{8^{19}+1}\)\(\frac{\left(8^{19}+1\right)+7}{8^{19}+1}\)=\(\frac{8^{19}+1}{8^{19} +1}\)+\(\frac{7}{8^{19}+1}\) =1+\(\frac{7}{8^{19}+1}\) =\(\frac{7}{8^{19}+1}\) 

         B= \(\frac{8^{23}+1}{8^{24}+1}\)=> 8B=\(\frac{8^{24}+8}{8^{24}+1}\)\(\frac{\left(8^{24}+1\right)+7}{8^{24}+1}\)=\(\frac{8^{24}+1}{8^{24}+1}\)+\(\frac{7}{8^{24}+1}\) =1+\(\frac{7}{8^{24} +1}\)=\(\frac{7}{8^{24}+1}\)

       vì  \(8^{19}\)<\(8^{24}\)=> \(8^{19}\)+1 >\(8^{24}\)+1 => \(\frac{7}{8^{19}+1}\)<\(\frac{7}{8^{24}+1}\)=> A<B

a) ta có \(8A=\frac{8^{19}+8}{8^{19}+1}=1+\frac{7}{8^{19}+1}\\ 8B=\frac{8^{24}+8}{8^{24}+1}=1+\frac{7}{8^{24}+1}\)

Vì \(8^{24}+1>8^{19}+1\\\frac{7}{8^{24}+1}< \frac{7}{8^{19}+1} \)

vậy 8A>8B nên A>B

23 tháng 7 2016

c=39/64

d=913/105

23 tháng 7 2016

3) C thiếu đề

4) \(D=\frac{1}{9}-\left|\frac{-5}{23}\right|-\left(\frac{-5}{23}+\frac{1}{9}+\frac{25}{7}\right)+\frac{50}{4}-\frac{7}{30}\)

\(D=\frac{1}{9}-\frac{5}{23}+\frac{5}{23}-\frac{1}{9}-\frac{25}{7}+\frac{50}{4}-\frac{7}{30}\)

\(D=\frac{1}{9}-\frac{1}{9}-\frac{5}{23}+\frac{5}{23}+\frac{-25}{7}+\frac{50}{4}-\frac{7}{30}\)

\(D=0+0+\frac{125}{14}-\frac{7}{30}\)

\(D=\frac{913}{105}\)

27 tháng 5 2018

a) \(A=2^{24}=\left(2^3\right)^8=8^8.\)(1)

\(B=3^{16}=\left(3^2\right)^8=9^8\)(2)

Từ (1) và (2) \(\Rightarrow A< B\)

Vậy \(A< B.\)

b) \(B=\left(0,3\right)^{30}=\left(0,3^2\right)^{15}=0,09^{15}\)(1)

\(A=\left(0,1\right)^{15}\)(2)

Từ (1) và (2) \(\Rightarrow A>B\)

Vậy \(A>B.\)

c) \(A=\left(\frac{-1}{4}\right)^8=\left(\frac{1}{4}\right)^8=\left[\left(\frac{1}{2}\right)^2\right]^8=\left(\frac{1}{2}\right)^{16}\)(1)

\(B=\left(\frac{1}{8}\right)^5=\left[\left(\frac{1}{2}\right)^3\right]^5=\left(\frac{1}{2}\right)^{15}\)(2)

Từ (1) và (2) \(\Rightarrow A>B\)

Vậy \(A>B.\)

d) \(A=102^7=102^6.102\)(1)

\(B=9^{13}=9^{12}.9=\left(9^2\right)^6.9=81^6.9\)(2)'

Từ (1) và (2) \(\Rightarrow A>B\)

Vậy \(A>B.\)

e) \(8A=8\frac{8^{18}+1}{8^{19}+1}=\frac{8^{19}+8}{8^{19}+1}=1+\frac{7}{8^{19}+1}\)(1)

\(8B=8\frac{8^{23}+1}{8^{24+1}}=\frac{8^{24}+8}{8^{24}+1}=1+\frac{7}{8^{24}+1}\)(2)

Từ (1) và (2) \(\Rightarrow8A>8B\Rightarrow A>B\)

Vậy \(A>B.\)

f) \(A=\frac{5^5}{5+5^2+5^3+5^4}=\frac{5^4}{1+5+5^2+5^3}=\frac{625}{156}>\frac{468}{156}=3.\)(1)

\(B=\frac{3^5}{3+3^2+3^3+3^4}=\frac{3^4}{1+3+3^2+3^3}=\frac{81}{40}< \frac{120}{40}=3.\)(2)

Từ (1) và (2) \(\Rightarrow A>B\)

Vậy \(A>B.\)

27 tháng 5 2018

a, ta có A=2^24=64^4

             B=3^16=81^4

Vì 64^4<81^4

Vậy 2^24<3^36

b, ta có A=0,1^15

             B=0,3^30=0,09^15

Vì 0,1^15< 0,09^15

Vậy 0,1^15<0,3^30

29 tháng 6 2018

\(A=\frac{9}{8}-\frac{8}{9}+\frac{3}{25}+\frac{1}{4}-\frac{5}{16}+\frac{19}{25}-\frac{1}{9}+\frac{2}{25}-\frac{1}{81}\)

\(A=\left(\frac{9}{8}+\frac{1}{4}-\frac{5}{16}\right)-\left(\frac{8}{9}+\frac{1}{9}-\frac{1}{81}\right)+\left(\frac{3}{25}+\frac{19}{25}+\frac{2}{25}\right)\)

\(A=\frac{17}{16}-\frac{80}{81}+\frac{24}{25}\)

\(A=\frac{33529}{32400}\)

29 tháng 6 2018

A=1+2+3+...+99+100

4 tháng 10 2021

yutyugubhujyikiu

9 tháng 10 2016

làm cho 1 cái những cái sau tương tự mà lm nha bạn

\(\frac{x}{5}=-\frac{6}{7}\)

\(=>7x=-6\cdot5\)

\(7x=-30\)

\(x=-\frac{30}{7}\)

9 tháng 10 2016

\(\frac{x}{2}=-\frac{8}{-x}\)

\(=>\frac{x}{2}=\frac{8}{x}\)

\(=>xx=8\cdot2\)

\(x^2=16\)

\(=>x\in\left\{-4;4\right\}\)