Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{8}+\frac{2x-1}{12}\)
=> \(\frac{x+5}{4}-\frac{2x-3}{3}-\frac{6x-1}{8}-\frac{2x-1}{12}=0\)
=> \(\frac{6x+30}{24}-\frac{16x-24}{24}-\frac{18x-3}{24}-\frac{4x-2}{24}=0\)
=> \(\left(6x+30\right)-\left(16x-24\right)-\left(18x-3\right)-\left(4x-2\right)=0\)
=> \(6x+30-16x+24-18x+3-4x+2=0\)
=> \(\left(6-16-18-4\right)x+\left(30+24+3+2\right)=0\)
=> \(-32x+59=0\)
=> \(-32x=-59\)
=> \(x=\frac{-59}{-32}=\frac{59}{32}\)
\(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{8}+\frac{2x-1}{12}\)
\(< =>\frac{6x+30}{24}-\frac{16x-24}{24}=\frac{18x-3}{24}+\frac{4x-2}{24}\)
\(< =>\frac{6x+30}{24}-\frac{16x-24}{24}-\frac{18x-3}{24}-\frac{4x-2}{24}=0\)
\(< =>6x+30-16x+24-18x+3-4x+2=0\)
\(< =>6x-16x-18x-4x+\left(30+24+3+2\right)=0\)
\(< =>x\left(6-16-18-4\right)+59=0\)
\(< =>x.\left(-32\right)=-59\)\(\)
\(< =>x=\frac{59}{32}\)
\(a,\frac{2x+4}{10}+\frac{2-x}{15}=\frac{\left(2x+4\right).3}{10.3}+\frac{\left(2-x\right).2}{15.2}\)
\(=\frac{6x+12}{30}+\frac{4-2x}{30}=\frac{6x+12+4-2x}{30}=\frac{4x+16}{30}\)
\(=\frac{4.\left(x+4\right)}{30}=\frac{2\left(x+4\right)}{15}\)
\(b,\frac{3x}{10}+\frac{2x-1}{15}+\frac{2-x}{20}=\frac{3x.6}{10.6}+\frac{\left(2x-1\right).4}{15.4}+\frac{\left(2-x\right).3}{20.3}\)
\(=\frac{18x}{60}+\frac{8x-4}{60}+\frac{6-3x}{60}=\frac{18x+8x-4+6-3x}{60}=\frac{23x+2}{60}\)
\(c,\frac{x+1}{2x-2}+\frac{x^2+3}{2-2x^2}=\frac{x+1}{2\left(x-1\right)}+\frac{x^2+3}{2\left(1-x^2\right)}=\frac{x+1}{2\left(x-1\right)}+\frac{-x^2-3}{2\left(x^2-1\right)}\)
\(=\frac{x+1}{2\left(x-1\right)}+\frac{-x^2-3}{2\left(x-1\right)\left(x+1\right)}\)\(=\frac{\left(x+1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}+\frac{-x^2-3}{2\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+2x+1-x^2-3}{2\left(x-1\right)\left(x+1\right)}=\frac{2x-2}{2\left(x-1\right)\left(x+1\right)}=\frac{2\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\)\(=\frac{1}{x+1}\)
a)\(\frac{2x-1}{x-1}-\frac{1}{x-1}=-1\)1
\(2=-1\)(vô lý)
Vậy phương trình này vô nghiệm
Các câu này phải có điều kiện xác định ( ĐKXĐ ) Bạn tự tìm nhé :
a) pt \(\Leftrightarrow\frac{2x-1-1+x-1}{x-1}=0\)
\(\Leftrightarrow3x=3\Leftrightarrow x=1\) ( loại do không thoa mãn ĐKXĐ )
b) pt \(\Leftrightarrow\frac{5x\left(x-1\right)+2\left(x-1\right)\left(x+1\right)+12\left(x+1\right)}{2\left(x+1\right)\left(x-1\right)}=0\)
\(\Leftrightarrow5x^2-5x+2x^2-2+12x+12=0\)
\(\Leftrightarrow7x^2+7x-10=0\)
\(\Leftrightarrow x=\frac{-7\pm\sqrt{329}}{14}\) ( thoả mãn )
c) d) Tương tự
Hướng dẫn:
a) Đặt : \(x^2-2x+1=t\)Ta có:
\(\frac{1}{t+1}+\frac{2}{t+2}=\frac{6}{t+3}\)
b) Đặt : \(x^2+2x+1=t\)
Ta có pt: \(\frac{t}{t+1}+\frac{t+1}{t+2}=\frac{7}{6}\)
c)ĐK: x khác 0
Đặt: \(x+\frac{1}{x}=t\)
KHi đó: \(x^2+\frac{1}{x^2}=t^2-2\)
Ta có pt: \(t^2-2-\frac{9}{2}t+7=0\)
a) Đặt \(x^2-2x+3=v\)
Phương trình trở thành \(\frac{1}{v-1}+\frac{2}{v}=\frac{6}{v+1}\)
\(\Rightarrow\frac{v\left(v+1\right)+2\left(v+1\right)\left(v-1\right)}{v\left(v+1\right)\left(v-1\right)}=\frac{6v\left(v-1\right)}{v\left(v+1\right)\left(v-1\right)}\)
\(\Rightarrow v\left(v+1\right)+2\left(v+1\right)\left(v-1\right)=6v\left(v-1\right)\)
\(\Rightarrow v^2+v+2v^2-2=6v^2-6v\)
\(\Rightarrow3v^2-7v+2=0\)
Ta có \(\Delta=7^2-4.3.2=25,\sqrt{\Delta}=5\)
\(\Rightarrow\orbr{\begin{cases}v=\frac{7+5}{6}=2\\v=\frac{7-5}{6}=\frac{1}{3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2-2x+3=2\\x^2-2x+3=\frac{1}{3}\end{cases}}\)
+) \(x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
+)\(x^2-2x+3=\frac{1}{3}\)
\(\Rightarrow x^2-2x+\frac{8}{3}=0\)
Ta có \(\Delta=2^2-4.\frac{8}{3}=\frac{-20}{3}< 0\)
Vậy phương trình có 1 nghiệm là x = 1
a: \(=\dfrac{4}{x+2}-\dfrac{3}{x-2}+\dfrac{12}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{4x-8-3x-6+12}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)
b: \(=\dfrac{6x+3\left(x-1\right)+2\left(x-2\right)}{6}=\dfrac{6x+3x-3+2x-4}{6}=\dfrac{11x-7}{6}\)
c: \(=\dfrac{1}{3x-2}-\dfrac{4}{3x+2}+\dfrac{3x-6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{3x+2-12x+8+3x-6}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-6x+4}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-2}{3x+2}\)
a) Có : \(\frac{2}{x+\frac{1}{1+\frac{x+1}{x-2}}}=\frac{6}{3x-1}\)
\(\Leftrightarrow\) \(\frac{2}{x+\frac{1}{\frac{x-2+x+1}{x-2}}}=\frac{6}{3x-1}\)
\(\Leftrightarrow\) \(\frac{2}{x+\frac{1}{\frac{2x-1}{x-2}}}=\frac{6}{3x-1}\)
\(\Leftrightarrow\) \(\frac{2}{x+\frac{x-2}{2x-1}}=\frac{6}{3x-1}\)
\(\Leftrightarrow\) \(\frac{2}{\frac{\left(2x-1\right).x+x-2}{2x-1}}=\frac{6}{3x-1}\)
\(\Leftrightarrow\) \(\frac{2}{\frac{2x^2-x+x-2}{2x-1}}=\frac{6}{3x-1}\)
\(\Leftrightarrow\) \(\frac{2}{\frac{2x^2-2}{2x-1}}=\frac{6}{3x-1}\)
\(\Leftrightarrow\) \(\frac{2.\left(2x-1\right)}{2x^2-2}=\frac{6}{3x-1}\) \(\Leftrightarrow\) \(\frac{4x-2}{2x^2-2}=\frac{6}{3x-1}\)
\(\Leftrightarrow\) \(\left(4x-2\right)\left(3x-1\right)=6\left(2x^2-2\right)\)
\(\Leftrightarrow\) \(12x^2-4x-6x+2=12x^2-12\)
\(\Leftrightarrow\) \(12x^2-10x+2-12x^2+12=0\)
\(\Leftrightarrow\) \(-10x+14=0\)
\(\Leftrightarrow\) \(-10x=-14\)
\(\Leftrightarrow\) \(x=\frac{-14}{-10}=\frac{14}{10}=\frac{7}{5}\)
Vậy \(x=\frac{7}{5}\)