\(A=\frac{1}{x+\sqrt{x}}+\frac{2\sqrt{X}}{X-1}-\frac{1}{X-\sqrt{X}}\)

1. Tìm x để...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2016

a)ĐK: x khác 1; x>0

A=\(\frac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)+\(\frac{2\sqrt{x}}{x-1}\)-\(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)=\(\frac{\sqrt{x}-1+2x-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)=\(\frac{2}{\sqrt{x}}\)

b) Để A nhận giá trị nguyên thì \(\sqrt{x}\in\)Ước của  2=>\(\sqrt{x}=2;\sqrt{x}=-2\)(loại)=>x=4

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)a) Rút gọn biểu thức Ab) Tính giá trị của A khi x=9c) Tìm x để A=5d) Tìm x để A<1e) Tìm giá trị nguyên của x để A nhận giá trị nguyên2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)a) Tính giá trị biểu thức P khi x...
Đọc tiếp

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

 

0
30 tháng 7 2018

a) Đk \(x>0\)và \(x\ne4\)

=\(\left(\frac{\sqrt{x}-2+\sqrt{x}+2}{x-4}\right)\).\(\frac{\sqrt{x}-2}{\sqrt{x}}\)

=\(\frac{2\sqrt{x}}{x-4}\).\(\frac{\sqrt{x}-2}{\sqrt{x}}\)

=\(\frac{2}{\sqrt{x}+2}\)

30 tháng 7 2018

b) Để \(\frac{2}{\sqrt{x}+2}>\frac{1}{2}\)

\(\Leftrightarrow\frac{4-\sqrt{x}-2}{2\left(\sqrt{x}+2\right)}\)\(>0\)

\(\Leftrightarrow\frac{-\sqrt{x}+2}{2\left(\sqrt{x}+2\right)}\)\(>0\)

Vì \(2\left(\sqrt{x}+2\right)>0\)

\(\frac{-\sqrt{x}+2}{2\left(\sqrt{x}+2\right)}\)\(>0\)

nên \(-\sqrt{x}+2>0\)\(\Leftrightarrow x< 4\)

Vậy vs \(0< x< 4\)thì \(A>\frac{1}{2}\)