\(\frac{1}{42}\)+\(\frac{1}{56}\)+\(\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2016

=\(\frac{289}{3444}\)nhé bạn

25 tháng 7 2016

 Đề có vấn đề A= 1/30 +...

1/30 + 1/42 +1/56 +1/72+1/90+1/110+1/132

= 1/5x6+1/6x7+1/7x8+1/8x9+1/9x10+1/10x11+1/11x12

=1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11+1/11-1/12

= 1/5 -1/12

=7/60

 MK lam bai nay roi nen mk nghi de sai  ! 

26 tháng 7 2019

\(A=\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+\frac{1}{156}\)

\(=\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}\)

\(=\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}\)

\(=\frac{1}{7}-\frac{1}{13}\)

\(=\frac{6}{91}\)

\(A=\frac{1}{7\times8}+\frac{1}{8\times9}+\frac{1}{9\times10}+...+\frac{1}{13\times14}\)

\(=\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{13}-\frac{1}{14}\)

\(=\frac{1}{7}-\frac{1}{14}=\frac{1}{14}\)

6 tháng 3 2018

\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)

\(A=\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}+\frac{1}{11\cdot12}\)

\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)

\(A=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)

15 tháng 4 2019

\(B=\frac{1}{30}+\frac{1}{42}+...+\frac{1}{132}\)

\(B=\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{11.12}\)

\(B=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{12}\)

\(B=\frac{1}{5}-\frac{1}{12}\)

\(B=\frac{12}{60}-\frac{5}{60}\)

\(B=\frac{7}{60}\)

15 tháng 4 2019

\(B=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)

\(B=\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{11.12}\)

\(B=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{12}\)

\(B=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)

P/s: Có thể tính sai :<  

19 tháng 4 2016

\(E=-\left(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\right)\)

\(E=-\left(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\right)\)

\(E=-\left(\frac{6-5}{5.6}+\frac{7-6}{6.7}+\frac{8-7}{7.8}+\frac{9-8}{8.9}+\frac{10-9}{9.10}+\frac{11-10}{10.11}+\frac{12-11}{11.12}\right)\)

\(E=-\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\right)\)

\(E=-\left(\frac{1}{5}-\frac{1}{12}\right)=-\frac{7}{60}\)

4 tháng 7 2020

giúp mình với

4 tháng 7 2019

a)\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{10.11}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)

\(1-\frac{1}{11}\)

\(\frac{10}{11}\)

b) Đặt A = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}\)

\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\)

=> 2A = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\)

Lấy 2A - A = \(\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)\)

              A  = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^7}\)

              A  = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^2}-...-\frac{1}{2^6}+\frac{1}{2^6}-\frac{1}{2^7}\)

             A   =\(1-\frac{1}{2^7}\)

4 tháng 7 2019

Đặt \(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}+\frac{1}{110}\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}+\frac{1}{10.11}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)

\(A=1-\frac{1}{11}\)

\(A=\frac{10}{11}\)

Đặt \(B=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

\(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}+\frac{1}{2^7}\left(1\right)\)

\(2B=\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+\frac{2}{2^4}+\frac{2}{2^5}+\frac{2}{2^6}+\frac{2}{2^7}\)

\(2B=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}\left(2\right)\)

Lấy \(\left(2\right)-\left(1\right)\)hay \(2B-B\)ta có:

\(2B-B=\left(1+\frac{1}{2}+...+\frac{1}{2^6}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\right)\)

\(\Rightarrow B=1-\frac{1}{2^7}\)

\(\Rightarrow B=\frac{2^7-1}{2^7}=\frac{128-1}{128}=\frac{127}{128}\)

HOK TOT

13 tháng 3 2016

A=1/2+1/6+1/12+1/20+1/30

A=1/1x2+1/2x3+1/3x4+1/3x5+1/5x6

A=1/1-1/2+1/2-1/3+.......+1/5-1/6

A=1/1-1/6

A=5/6

20 tháng 5 2017

Đặt phép tính trên là \(A\)

Có: \(A=\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+....+\frac{1}{90}\right)-x=\frac{19}{24}\)

\(A=\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{9.10}\right)-x=\frac{19}{24}\)

\(A=\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}-\frac{1}{6}+....+\frac{1}{9}-\frac{1}{10}\right)-x=\frac{19}{24}\)

\(A=\left(\frac{1}{3}-\frac{1}{9}\right)-x=\frac{19}{24}\)

\(A=\frac{2}{9}-x=\frac{19}{24}\)

\(x=\frac{2}{9}-\frac{19}{24}=-\frac{41}{72}\)

\(\Rightarrow x=-\frac{41}{72}\)

20 tháng 5 2017

tao hong biet lam tom lai la tit

17 tháng 3 2018

a) \(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)

\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)

\(=\frac{1}{5}-\frac{1}{12}\)

\(=\frac{12}{60}+\frac{-5}{60}\)

\(=\frac{7}{60}\)

b) \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(=\frac{2}{3}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\right)\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}\)

\(=\frac{33}{99}-\frac{1}{99}\)

\(=\frac{32}{99}\)

17 tháng 3 2018

a) \(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{132}=\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{11.12}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-...-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)

\(=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)

b) \(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)