\(A=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{99\cdot100}\)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2016

CM cai j cay

16 tháng 5 2016

//Chứng minh gì thế=)) < 7/12 hay > 7/12 hay = 7/12

3 tháng 8 2017

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{99}+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(A=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\)

\(A=\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}\right)+\left(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}\right)\)

Ta có : \(\frac{1}{51}>\frac{1}{52}>...>\frac{1}{75}\)\(\frac{1}{76}>\frac{1}{77}>...>\frac{1}{100}\)nên :

\(A>\frac{1}{75}.25+\frac{1}{100}.25=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

\(A< \frac{1}{51}.25+\frac{1}{76}.25< \frac{1}{50}.25+\frac{1}{75}.25=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)

Vậy \(\frac{7}{12}< A< \frac{5}{6}\)

3 tháng 8 2017

+A=1/(1.2)+1/(3.4)+...+1/(99.100) 
=1/1-1/2+1/3-1/4+....+1/99-1/100 
=1/2+1/3-1/4+1/5-1/6+1/7+...-1/98+1/99... 
=(1/2+1/3)+(1/5-1/4)+(1/7-1/6)+..+(1/9... 
=5/6-(1/4.5+1/6.7+..1/98.99+1/100)<5/6 
do -(1/4.5+1/6.7+..1/98.99+1/100)<0 
+A=1/(1.2)+1/(3.4)+...+1/(99.100) 
=1/2+1/12+1/(5.6)+...+1/(99.100) 
=7/12+[1/(5.6)+...1/(99.100)] 
>7/12 do [1/(5.6)+...1/(99.100)]>0

7 tháng 11 2015

ta có: A=\(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}=>A=\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+..+\frac{1}{75}\right)+\left(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}\right)\)

\(\frac{1}{51}>\frac{1}{52}>\frac{1}{53}>...>\frac{1}{75};\frac{1}{76}>\frac{1}{77}>...>\frac{1}{100}\)

do đó:\(A>\frac{1}{75}.25+\frac{1}{100}.25=>A>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)  (1)

lại có: \(A<\frac{1}{51}.25+\frac{1}{76}.25<\frac{1}{50}.25+\frac{1}{75}.25=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)   (2)

từ (1) và (2)=>7/12<A<5/6(đpcm)

 

 

6 tháng 12 2015

Ta có

\(A=\frac{2-1}{1.2}+\frac{4-3}{3.4}+\frac{6-5}{5.6}+...+\frac{100-99}{99.100}\)

\(A=\frac{2}{1.2}-\frac{1}{1.2}+\frac{4}{3.4}-\frac{3}{3.4}+\frac{6}{5.6}-\frac{5}{5.6}+...+\frac{100}{99.100}-\frac{99}{100.99}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

<=>A=1-1/100=99/100

=>7/12<A<5/6(bấm máy tính là biết)

23 tháng 10 2015

http://olm.vn/hoi-dap/question/248248.html

23 tháng 10 2015

Đặt \(B=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

=>\(B=\frac{1}{1.2}+\frac{1}{2.6}+\frac{1}{3.10}+...+\frac{1}{25.98}\)

=>\(B<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{25.26}\)

=>\(B<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{25}-\frac{1}{26}\)

=>\(B<1-\frac{1}{26}<1-\frac{1}{2}=\frac{1}{2}\)

=>\(B<\frac{1}{2}\)

Đặt \(C=\frac{1}{51.52}+\frac{1}{53.54}+\frac{1}{55.56}+...+\frac{1}{99.100}\)

=>\(C=\frac{1}{26.102}+\frac{1}{27.106}+\frac{1}{28.110}+...+\frac{1}{50.198}\)

=>\(C<\frac{1}{26.27}+\frac{1}{27.28}+\frac{1}{28.29}+...+\frac{1}{50.51}\)

=>\(C<\frac{1}{26}-\frac{1}{27}+\frac{1}{27}-\frac{1}{28}+\frac{1}{28}-\frac{1}{29}+...+\frac{1}{50}-\frac{1}{51}\)

=>\(C<\frac{1}{26}-\frac{1}{51}<\frac{1}{3}-\frac{1}{51}<\frac{1}{3}-\frac{0}{51}=\frac{1}{3}-0=\frac{1}{3}\)

=>\(C<\frac{1}{3}\)

Lại có: \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}=B+C\)

=>\(A=B+C<\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)

=>\(A<\frac{5}{6}\)

23 tháng 9 2018

\(C=\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+....+\frac{99.100-1}{100!}\)

\(\Rightarrow C=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(\Rightarrow C=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(\Rightarrow C=\left(2+\frac{3.4}{4!}+\frac{4.5}{5!}+....+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{10!}\right)\)

\(\Rightarrow C=\left(2+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(\Rightarrow C=2-\frac{1}{99!}-\frac{1}{100!}< 2\Rightarrow C< 2\)

\(b,C=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+....+\frac{19}{9^2.10^2}\)

\(\Rightarrow C=\frac{3}{\left(1.2\right)\left(1.2\right)}+\frac{5}{\left(2.3\right)\left(2.3\right)}+...+\frac{19}{\left(9.10\right)\left(9.10\right)}\)

\(\Rightarrow C=\frac{3}{1.2}.\frac{1}{1.2}+\frac{5}{2.3}.\frac{1}{2.3}+....+\frac{19}{9.10}.\frac{1}{9.10}\)

\(\Rightarrow C=\left(1+\frac{1}{2}\right)\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}+\frac{1}{3}\right)\left(\frac{1}{2}-\frac{1}{3}\right)+....+\left(\frac{1}{9}+\frac{1}{10}\right)\left(\frac{1}{9}-\frac{1}{10}\right)\)

\(\Rightarrow C=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+....+\frac{1}{81}-\frac{1}{90}\)

\(\Rightarrow C=1-\frac{1}{90}< 1\Rightarrow C< 1\)