\( A=\frac{1+13+13^2+...+13^{13}}{1+13+13^2+...+13^{12}}\) và \...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2019

a) \(\frac{15}{12}+\frac{5}{13}-\frac{3}{12}-\frac{18}{13}=\left(\frac{15}{12}-\frac{3}{12}\right)+\left(\frac{5}{13}-\frac{18}{13}\right)\)

                                                     \(=1+\left(-1\right)\)

                                                     \(=0\)

b) \(\frac{11}{24}-\frac{5}{41}+\frac{13}{24}+0,5-\frac{36}{41}=\left(\frac{11}{24}+\frac{13}{24}\right)+\left(-\frac{5}{41}-\frac{36}{41}\right)+0,5\)

                                                                    \(=1+\left(-1\right)+0,5\)

                                                                    \(=0,5\)

_Học tốt nha_

11 tháng 12 2019

a, \(\frac{15}{12}\)\(\frac{5}{13}\)\(\frac{3}{12}\)-\(\frac{18}{13}\)

\(\frac{5}{4}\)\(\frac{5}{13}\) - \(\frac{1}{4}\) - \(\frac{18}{13}\)

\(\left(\frac{5}{4}-\frac{1}{4}\right)\)\(\left(\frac{5}{13}-\frac{18}{13}\right)\)

= 1 - 1 = 0

b, \(\frac{11}{24}\)\(\frac{5}{41}\)\(\frac{13}{24}\)+ 0,5 - \(\frac{36}{41}\)

\(\left(\frac{11}{24}+\frac{13}{24}\right)\)\(\left(\frac{5}{41}+\frac{36}{41}\right)\)+ 0,5

= 1 - 1 + 0,5 = 0,5

c,  \(\left(-\frac{3}{4}+\frac{2}{3}\right):\frac{5}{11}+\left(-\frac{1}{4}+\frac{1}{3}\right):\frac{5}{11}\)

=\(\left(-\frac{3}{4}+\frac{2}{3}\right).\frac{11}{5}+\left(-\frac{1}{4}+\frac{1}{3}\right).\frac{5}{11}\)

\(\frac{11}{5}.\left(-\frac{3}{4}+\frac{2}{3}-\frac{1}{4}+\frac{1}{3}\right)\)

\(\frac{11}{5}.\left[\left(-\frac{3}{4}-\frac{1}{4}\right)+\left(\frac{2}{3}+\frac{1}{3}\right)\right]\)

=  \(\frac{11}{5}.\left[\left(-1\right)+1\right]\)

= 0

d, \(\left(-3\right)^2.\left(\frac{3}{4}-0,25\right)-\left(3\frac{1}{2}-1\frac{1}{2}\right)\)

\(9.\left(0,75-0,25\right)-2\)

= 9. 0,5 - 2 = 2,5

e, \(\frac{13}{25}+\frac{6}{41}-\frac{38}{25}+\frac{35}{41}-\frac{1}{2}\)

\(\left(\frac{13}{25}-\frac{38}{25}\right)+\left(\frac{6}{41}+\frac{35}{41}\right)-\frac{1}{2}\)

= -1 + 1 - \(\frac{1}{2}\)

\(-\frac{1}{2}\)

5 tháng 9 2019

A = 5/7.(1+9/13) − 5/7.9/13

A= 5/7.(1+9/13 - 9/13)

A = 5/7.1

A = 5/7

B = 11/24 − 5/41 + 13/24 + 0.5 − 36/41

B = (11/24 + 13/24) - (5/41 + 36/41) + 0.5

B = 1 - 1 + 0.5

B = 0.5

C = −4/13.5/17 + (−12/13).4/17 + 4/13

C = 4/13.(-5/17) + (−12/13).4/17 + 4/13

C = 4/13.(-5/17 + 1) + (−12/13).4/17

C = 4/13.(−12/17) + (−12/13).4/17

C = (4.-12)/(13.17) + (−12/13).4/17

C = 4/17.(−12/13) + (−12/13).4/17

C = 4/17.(−12/13).2

C = 96/221

D = (4/3 − 3/2)2 − 2.∣−1/9∣ + (−5/18)

D = (4/3 − 3/2)2 − 2.1/9+ (−5/18)

D = -1/62 - 2/9+ (−5/18)

D = -1/12 - ( 2/9+ (−5/18) )

D = -1/12 - ( 4/18+ (−5/18) )

D = -1/12 - (-1/18)

D = -1/12 + 1/18

D = -3/36 + 2/36

D = -1/36

E = (−3/4 + 2/3):5/11 + (−1/4 + 1/3):5/11

E = (−3/4 + 2/3 + (−1/4) + 1/3):5/11

E = ((−3/4 + (−1/4)) + (2/3 + + 1/3)):5/11

E = ( - 1 + 1):5/11

E = 0:5/11

E = 0

21 tháng 8 2016

\(\frac{x+2}{10^{10}}+\frac{x+2}{11^{11}}=\frac{x +2}{12^{12}}+\frac{x+2}{13^{13}}\)

\(\Leftrightarrow\frac{x+2}{10^{10}}+\frac{x+2}{11^{11}}-\left(\frac{x+2}{12^{12}}+\frac{x+2}{13^{13}}\right)=0\)

\(\Leftrightarrow\frac{x+2}{10^{10}}+\frac{x+2}{11^{11}}-\frac{x+2}{12^{12}}-\frac{x+2}{13^{13}}=0\)

\(\Leftrightarrow\left(x+2\right).\left(\frac{1}{10^{10}}+\frac{1}{11^{11}}+\frac{1}{12^{12}}+\frac{1}{13^{13}}\right)=0\)

Vì \(\left(\frac{1}{10^{10}}+\frac{1}{11^{11}}+\frac{1}{12^{12}}+\frac{1}{13^{13}}\right)\ne0\)nên \(x+2=0\Rightarrow x=-2\)

21 tháng 8 2016

<=>\(\frac{x+2}{10^{10}}+\frac{x+2}{11^{11}}-\frac{x+2}{12^{12}}-\frac{x+2}{13^{13}}=0\)

<=>\(\left(x+2\right)\left(\frac{1}{10^{10}}+\frac{1}{11^{11}}-\frac{1}{12^{12}}-\frac{1}{13^{13}}\right)=0\)

Vì \(\frac{1}{10^{10}}+\frac{1}{11^{11}}-\frac{1}{12^{12}}-\frac{1}{13^{13}}>0\)

=>  \(x+2=0\)

<=>\(x=-2\)

a) \(\frac{1}{12}+\frac{3}{15}+\frac{11}{12}+\frac{1}{71}-\frac{12}{10}=\left(\frac{1}{12}+\frac{11}{12}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+\frac{1}{71}\)

\(=\frac{12}{12}+0+\frac{1}{71}=1+\frac{1}{71}=1\frac{1}{71}=\frac{72}{71}\)

b) \(\frac{2}{3}-4\left(\frac{1}{2}+\frac{3}{4}\right)=\frac{2}{3}-4.\frac{5}{4}=\frac{2}{3}-5=\frac{2}{3}-\frac{15}{3}=-\frac{13}{3}\)

c) \(\frac{-4}{13}.\frac{3}{17}+\frac{-12}{13}.\frac{4}{7}+\frac{4}{13}=\frac{4}{13}.\frac{-3}{17}+\frac{4}{13}.\frac{-12}{17}+\frac{4}{13}.1\)

\(=\frac{4}{13}\left(\frac{-3}{17}+\frac{-12}{17}+1\right)=\frac{4}{13}\left(\frac{-15}{17}+\frac{17}{17}\right)=\frac{4}{13}.\frac{2}{17}=\frac{8}{221}\)

d) \(\frac{10^3+2.5+5^3}{55}=\frac{1000+10+125}{55}=\frac{1135}{55}=\frac{227}{11}\)

23 tháng 12 2015

\(\Leftrightarrow\left(x+2\right)\left(\frac{1}{10^{10}}+\frac{1}{11^{11}}-\frac{1}{12^{12}}-\frac{1}{13^{13}}\right)=0\)

Vì \(\left(\frac{1}{10^{10}}+\frac{1}{11^{11}}-\frac{1}{12^{12}}-\frac{1}{13^{13}}\right)\ne0\)

=> x+2 =0 => x =-2

22 tháng 8 2019

a, \(\frac{1}{4}+\frac{5}{12}-\frac{1}{13}-\frac{7}{8}\)

\(=\left(\frac{1}{4}+\frac{5}{12}\right)-\left(\frac{1}{13}+\frac{7}{8}\right)\)

\(=\frac{2}{3}-\frac{99}{104}\)

\(=-\frac{89}{312}\)

b, \(11\frac{3}{13}-2\frac{4}{7}+5\frac{3}{13}\)

\(=\left(11\frac{3}{13}+5\frac{3}{13}\right)-2\frac{4}{7}\)

\(=\frac{214}{13}-\frac{18}{7}\)

\(=\frac{1264}{91}\)

c, \(\left(6\frac{4}{9}+3\frac{7}{11}\right)-4\frac{4}{9}\)

\(=6\frac{4}{9}+3\frac{7}{11}-4\frac{4}{9}\)

\(=\left(6\frac{4}{9}-4\frac{4}{9}\right)+3\frac{7}{11}\)

\(=2+3\frac{7}{11}\)

\(=5\frac{7}{11}\)

\(=\frac{62}{11}\)

d, \(\left(6,17+3\frac{5}{9}-2\frac{36}{97}\right)\left(\frac{1}{3}-0,25-\frac{1}{12}\right)\)

\(=\left(6,17+3\frac{5}{9}-2\frac{36}{97}\right)\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{12}\right)\)

\(=\left(6,17+3\frac{5}{9}-2\frac{36}{97}\right)\cdot0\)

\(=0\)

e, \(-1,5\cdot\left(1+\frac{2}{3}\right)\)

\(=-\frac{3}{2}\cdot\frac{5}{3}\)

\(=-\frac{5}{2}\)

f, Đặt \(A=1^2+2^2+3^2+...+100^2\)

\(=1+2\left(3-1\right)+3\left(4-1\right)+...+100\left(101-1\right)\)

\(=1+2\cdot3-2+3\cdot4-3+...+100\cdot101-100\)

\(=\left(2\cdot3+3\cdot4+...+100\cdot101\right)-\left(1+2+3+...+100\right)\)

Đặt B = 2 . 3 + 3 . 4 + ... + 100 . 101 

3B = 2 . 3 ( 4 - 1 ) + 3 . 4 ( 5 - 2 ) + ... + 100 . 101 . ( 102 - 99 )

3B = 2 . 3 . 4 - 1 . 2 . 3 + 3 . 4 . 5 - 2 . 3 . 4 + ... + 100 . 101 . 102 - 99 . 100 . 101 

3B = 100 . 101 . 102

B = \(\frac{100\cdot101\cdot102}{3}\)

B = 343400

Thay B vào A. Ta được :

\(A=343400-\left(1+2+3+...+100\right)\)

Thay C = 1 + 2 + 3 + ... + 100

Dãy số 1; 2; 3; ...; 100 có số số hạng là:

( 100 - 1 ) : 1 + 1 = 100 ( số hạng )

Tổng của dãy số đó là :

( 100 + 1 ) . 100 : 2 = 5050

=> C = 5050

Thay C vào A. Ta được :

\(A=343400-5050\)

\(A=338350\)

Vậy A = 338350