\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+\(\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2019

A=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2016}-\frac{1}{2017}\)

A=\(\frac{1}{1}-\frac{1}{2017}\)

A=\(\frac{2016}{2017}\)

mình quên ghi dấu "=" xin lỗi nhé

10 tháng 5 2017

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2016\cdot2017}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(=1-\frac{1}{2017}=\frac{2016}{2017}\)

26 tháng 2 2018

a)hình như =55

7 tháng 4 2017

Lâm đi là: 35 phút +2 giờ 20phút =2 giờ 55 phút

7 tháng 4 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(A=1-\frac{1}{2017}\)

\(A=\frac{2016}{2017}\)

31 tháng 3 2017

sai bét

31 tháng 3 2017

dễ lắm

s=

................

kb đi 

4 tháng 12 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2106}\)

\(A=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{2015}-\frac{1}{2016}\right)\)

\(A=\frac{1}{1}-\frac{1}{2016}=\frac{2015}{2016}\)

\(B=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2014.2016}=\frac{1}{4}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1007.1008}\right)\)

=> \(B=\frac{1}{4}.\left(\frac{1}{1}-\frac{1}{1008}\right)=\frac{1}{4}.\frac{1007}{1008}\)

=> \(B=\frac{1007}{4032}\)

26 tháng 3 2017

tách tử thành 1.3 ( cho 3 ra ngoài làm nhân tử chung)

=> ở mẫu còn nguyên tắc số thứ 2- số thứ 1 = tử

=> (1/1.2+1/2.3+.......+1/2015.2016 ) .3

 =  (2-1/1.2+3-2/2.3+......+2016-2015/2015.2016).3

 =  (2/1.2-1/1.2+3/2.3-2/2.3..........+2016/2015.2016- 2015/2015.2016).3

 =  ( 1-1/2+1/2-1/3+...........+ 1/2015-1/2016).3

 =   ( 1-1/2016 ) .3

 =    2015/2016 .3

26 tháng 3 2017

\(S=3.\left(\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}+...+\frac{1}{2015}.\frac{1}{2016}\right)\)

\(3S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(3S=1-\frac{1}{2016}\)

\(3S=\frac{2015}{2016}\)

\(S=\frac{2015}{2016}:3\)

\(S=\frac{2015}{6048}\)

27 tháng 4 2017

A= 1/1-1/2+1/2-1/3+1/4-1/5+...+1/101-1/102

A=1-1/102=102/102-1/102=101/102

ý b thì chờ mình tí tìm cách lập luận đã nhé

27 tháng 4 2017

A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}+\frac{1}{101.102}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{101}-\frac{1}{102}\)

\(A=1-\frac{1}{102}\)

\(A=\frac{101}{102}\)

13 tháng 3 2017

Xin lỗi máy tớ chỉ có cách viết phân số thế này / thông cảm

Ta có : A= 1/1 -1/2 + 1/2 -1/3 + 1/3 - 1/4 + 1/4 -1/5 +... + 1/19 - 1/20

=>       A= 1/1 - 1/20

=>        A = 19/20

Vậy A = 19/20

13 tháng 3 2017

\(\frac{19}{20}\)nhé