K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2019

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{199\cdot200}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(A=1-\frac{1}{200}\)

\(A=\frac{199}{200}\)

20 tháng 2 2019

\(=1-\frac{1}{200}=\frac{199}{200}\)

27 tháng 8 2017

a) = 1-1/2+1/2-1/3+1/3-1/4

    = 1-1/4=3/4

b)=1-1/2+1/2-1/3+1/3-1/4+...+1/2016-1/2017+1/2017-1/2018

   =1-1/2018=2017/2018

c)=1/2-1/5+1/5-1/8+1/8-1/11+1/2009-1/2012+1/2012-1/2015

   = 1/2-1/2015=2015/4030-2/4030=2013/4030

27 tháng 8 2017

a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}=1-\frac{1}{4}=\frac{3}{4}\)

b) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017-2018}\)

\(=1-\frac{1}{2018}\)

\(=\frac{2017}{2018}\)

c) \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{2012.2015}\)

\(=3\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{2012.2015}\right)\)

\(\Leftrightarrow\frac{3}{2}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{2012}-\frac{1}{2015}\right)\)

\(=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{2015}\right)\)

\(=\frac{3}{2}.\frac{2013}{4030}\)

\(=\frac{6039}{8060}\)

12 tháng 5 2015

\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{199}-\frac{1}{200}+\frac{1}{2}x=\frac{3}{2}\)

\(\Leftrightarrow1-\frac{1}{200}+\frac{1}{2}x=\frac{3}{2}\)

\(\Leftrightarrow\frac{199}{200}+\frac{1}{2}x=\frac{3}{2}\)

\(\Leftrightarrow\frac{1}{2}x=\frac{3}{2}-\frac{199}{200}\)

\(\Leftrightarrow\frac{1}{2}x=\frac{101}{200}\)

\(\Leftrightarrow x=\frac{101}{200}:\frac{1}{2}\)

\(\Leftrightarrow x=\frac{101}{100}\)

12 tháng 5 2015

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{199}-\frac{1}{200}=1-\frac{1}{200}=\frac{199}{200}\)

=> \(\frac{199}{200}+\frac{1}{2}x=1\frac{1}{2}=\frac{3}{2}\Rightarrow\frac{1}{2}x=\frac{101}{200}\Rightarrow x=\frac{101}{100}\)

đúng nhé

27 tháng 5 2017

Ta có: \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)(1)

Thay (1) vào đề bài

\(\Rightarrow\frac{\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}}{\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}}=1\)

27 tháng 5 2017

\(\frac{\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}}{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}}\)

\(=\frac{\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}}{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}}\)

\(=\frac{\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}}{\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)}\)

\(=\frac{\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}}{\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{199}+\frac{1}{200}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)}\)

\(=\frac{\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}}{\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)}\)

\(=\frac{\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}}{\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}}\)

\(=1\)

18 tháng 3 2018

co ban nao ra chua de minh do ke qua coi dung ko?

18 tháng 3 2018

\(S=\frac{1}{1.2}+\frac{1}{3.4}+.........+\frac{1}{199.200}\)

\(\Leftrightarrow x\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\right)=2011\)

\(\Leftrightarrow x\cdot\dfrac{2011}{2012}=2011\)

hay x=2012

16 tháng 5 2022

\(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2011.2012}\right)x=2011\)

\(\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\right)x=2011\)

\(\left(\dfrac{1}{1}-\dfrac{1}{2012}\right)x=2011\)

\(\dfrac{2011}{2012}x=2011\)
\(x=2012\)

\(A=-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{\left(n-1\right)n}\)

\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n-1.n}\right)\)

\(=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(=-\left(1-\frac{1}{n}\right)\)

\(=-\frac{n-1}{n}\)

16 tháng 9 2019

\(A=-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{\left(n-1\right).n}\)

\(A=-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\right)\)

\(A=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\right)\)

\(\Rightarrow A=-\left(1-\frac{1}{n}\right)\)