\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+........+\frac{1}{1+2+3+4+5+.......+99}+\fra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2018

\(2A=1+\frac{1}{2}+...+\frac{1}{2^{49}}\)

\(2A-A=1-\frac{1}{2^{50}}\)

\(A=1-\frac{1}{2^{50}}\)=> A bé hơn 1

tương tự nha

3 tháng 8 2018

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)

\(2A=2.\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)

\(A=1-\frac{1}{2^{50}}< 1\)

    

11 tháng 12 2016

Với mọi \(x\in Z\) ta có:

\(1+2+3+..+n=\frac{n\left(n+1\right)}{2}\)

=> \(\frac{1}{1+2+3+..+n}=\frac{2}{n\left(n+1\right)}=2\left[\frac{1}{n\left(n+1\right)}\right]=2\left(\frac{1}{n}-\frac{1}{n+1}\right)\)

Có:

\(\frac{1}{1+2}=2\left(\frac{1}{2}-\frac{1}{3}\right)\)

\(\frac{1}{1+2+3}=2\left(\frac{1}{3}-\frac{1}{4}\right)\)

.......................................................

\(\frac{1}{1+2+3+4+...+99}=2\left(\frac{1}{99}-\frac{1}{100}\right)\)

Nên:

\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+..+99}+\frac{1}{50}\)

\(=2\left(\frac{1}{2}-\frac{1}{3}\right)+2\left(\frac{1}{3}-\frac{1}{4}\right)+...+2\left(\frac{1}{99}-\frac{1}{100}\right)+\frac{1}{50}\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)+\frac{1}{50}\)

\(=2\left(\frac{1}{2}-\frac{1}{100}\right)+\frac{1}{50}=2\cdot\frac{49}{100}+\frac{1}{50}=\frac{49}{50}+\frac{1}{50}=1\)

11 tháng 12 2016

Cảm ơn bạn (chị ) nhiều !leu

Công nhận chị học giỏi thật đấy !eoeo

10 tháng 1 2016

làm thế nào

 

5 tháng 1 2016

\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+99}+\frac{1}{50}\)

\(=\frac{1}{\frac{\left(2+1\right).2}{2}}+\frac{1}{\frac{\left(3+1\right).3}{2}}+\frac{1}{\frac{\left(4+1\right).4}{2}}+....+\frac{1}{\frac{\left(99+1\right).99}{2}}+\frac{1}{50}\)

\(=\frac{1}{\frac{3.2}{2}}+\frac{1}{\frac{4.3}{2}}+\frac{1}{\frac{5.4}{2}}+....+\frac{1}{\frac{100.99}{2}}+\frac{1}{50}\)

\(=\frac{2}{3.2}+\frac{2}{4.3}+\frac{2}{5.4}+...+\frac{2}{100.99}+\frac{1}{50}\)

\(=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)+\frac{1}{50}\)

\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)+\frac{1}{50}\)

\(=2.\left(\frac{1}{2}-\frac{1}{100}\right)+\frac{1}{50}=2.\frac{49}{100}+\frac{1}{50}=\frac{49}{50}+\frac{1}{50}=1\)

5 tháng 1 2016

\(A=\frac{2}{2}-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+...+\frac{2}{99}-\frac{2}{100}+\frac{1}{50}\)

\(A=\frac{2}{2}-\frac{2}{100}+\frac{1}{50}=1\)

27 tháng 7 2019

\(2A=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+.....-\frac{1}{2^{99}}\Rightarrow2A+A=3A=\left(1-\frac{1}{2}+\frac{1}{2^2}-....-\frac{1}{2^{99}}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+......-\frac{1}{2^{100}}\right)=1-\frac{1}{2^{100}}=\frac{2^{100}-1}{2^{100}}\Rightarrow A=\frac{2^{100}-1}{3.2^{100}}\)

\(2,4B=2+\frac{1}{2}+\frac{1}{2^3}+.....+\frac{1}{2^{97}}\Rightarrow4B-B=3B=\left(2+\frac{1}{2}+....+\frac{1}{2^{97}}\right)-\left(\frac{1}{2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\right)=2-\frac{1}{2^{99}}=\frac{2^{100}-1}{2^{99}}\Rightarrow B=\frac{2^{100}-1}{3.2^{99}}\)

\(3,C=\frac{1}{2}-\frac{1}{2^4}+\frac{1}{2^7}-....-\frac{1}{2^{58}}\Rightarrow8C=4-\frac{1}{2}+\frac{1}{2^4}-.....-\frac{1}{2^{55}}\Rightarrow8C+C=9C=\left(4-\frac{1}{2}+\frac{1}{2^4}-....-\frac{1}{2^{55}}\right)+\left(\frac{1}{2}-\frac{1}{2^4}+\frac{1}{2^7}-....-\frac{1}{2^{58}}\right)=4-\frac{1}{2^{58}}=\frac{2^{60}-1}{2^{58}}\Rightarrow C=\frac{2^{60}-1}{9.2^{58}}\)