Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để chứng minh A > \(\frac{4}{3}\)ta tách tổng A thành 3 nhóm :
A = \(\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{70}\right)\)
A > \(\frac{1}{30}.20+\frac{1}{50}.20+\frac{1}{70}.20=\frac{2}{3}+\frac{2}{5}+\frac{2}{7}=1\frac{37}{105}>1\frac{35}{105}=1\frac{1}{3}=\frac{4}{3}\)
để chứng minh A < 2,5 ta tách tổng A thành 6 nhóm :
A = \(\left(\frac{1}{11}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+...+\frac{1}{70}\right)\)
A < \(\frac{1}{11}.10+\frac{1}{21}.10+\frac{1}{31}.10+\frac{1}{41}.10+\frac{1}{51}.10+\frac{1}{61}.10< 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\)
\(=1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)+\left(\frac{1}{4}+\frac{1}{5}\right)< 2+0,5=2,5\)
Bạn có hiểu không chi le hay để mình giải thích cho
Ta tách biểu thức thành 7 nhóm , t CÓ các nhóm sau :
- \(\frac{1}{11}\)+\(\frac{1}{12}\)+\(\frac{1}{13}\)+...+\(\frac{1}{20}\)
- .....
Ta thấy tất cả các phân số trên đều > hơn \(\frac{1}{20}\)
=> \(\frac{1}{11}\)+\(\frac{1}{12}\)+\(\frac{1}{13}\)+....+\(\frac{1}{20}\)> \(\frac{10}{20}\)=\(\frac{1}{2}\) ( VÌ CÓ 10 phân số đều lớn hơn hoặc = \(\frac{1}{20}\))
Tương tự với 7 nhóm còn lại mỗi nhóm gồm 10 phân số ta được các phân số \(\frac{1}{3}\),\(\frac{1}{4}\),\(\frac{1}{5},\frac{1}{6},\frac{1}{7}\)
Ta cộng tổng các p/s \(\frac{1}{3},\frac{1}{4}\frac{1}{5},\frac{1}{6},\frac{1}{7}\)ta được p/s \(\frac{223}{140}>\frac{4}{3}\)
=> ĐIỀU PHẢI CHỨNG MINH
Mk chỉ làm được ở chỗ 4/3 < A thôi
Vậy nhé bạn yêu wys!!!!!!!!!!!!!!
b
\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+..+\frac{1}{70}\)
Ta thấy:
\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)( có 10 phân số \(\frac{1}{20}\)) = \(\frac{1}{20}\).10 = \(\frac{1}{2}\)
\(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\)(có 10 phân số \(\frac{1}{30}\)) = \(\frac{1}{30}\).10 = \(\frac{1}{3}\)
\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\)( có 10 phân số \(\frac{1}{40}\)) = \(\frac{1}{40}\).10 = \(\frac{1}{4}\)
\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\)( có 10 phân số \(\frac{1}{50}\)) =\(\frac{1}{50}.10=\frac{1}{5}\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\)( có 10 phân số \(\frac{1}{60}\)) =\(\frac{1}{60}.10=\frac{1}{6}\)
\(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}>\frac{1}{70}+\frac{1}{70}+...+\frac{1}{70}\)( có 10 phân số \(\frac{1}{70}\)) \(=\frac{1}{70}.10=\frac{1}{7}\)
=> A> \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}=\frac{223}{140}=\frac{699}{420}>\frac{560}{420}=\frac{4}{3}\)
=> A > \(\frac{4}{3}\)
\(A\)\(=\)\(\frac{1}{9}\)\(-\)\(\frac{1}{10}\)\(+\)\(\frac{1}{10}\)\(-\)\(\frac{1}{11}\)\(+\)\(\frac{1}{11}\)\(-\)\(\frac{1}{12}\)\(+\)\(\frac{1}{12}\)\(-\)\(\frac{1}{13}\)\(+\)\(\frac{1}{13}\)\(-\)\(\frac{1}{14}\)\(+\)\(\frac{1}{14}\)\(-\)\(\frac{1}{15}\)
\(A\)\(=\)\(\frac{1}{9}\)\(-\)\(\frac{1}{15}\)
\(A\)\(=\)\(\frac{2}{45}\)
\(A=\left(\frac{1}{9}.\frac{1}{10}+\frac{1}{10}.\frac{1}{11}\right)+\left(\frac{1}{11}.\frac{1}{12}+\frac{1}{12}.\frac{1}{13}\right)+\left(\frac{1}{13}.\frac{1}{14}+\frac{1}{14}.\frac{1}{15}\right)\)
Sau đó nhân phân phối ra là xong nhé bạn