Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi dãy trên là A
\(\Leftrightarrow2A=\frac{2}{11\cdot13}+\frac{2}{13\cdot15}+...+\frac{2}{19\cdot21}\)
\(\Leftrightarrow2A=\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{19}-\frac{1}{21}\)
\(\Leftrightarrow2A=\frac{1}{11}-\frac{1}{21}+0+...+0\)
\(\Leftrightarrow2A=\frac{10}{231}\)
\(\Leftrightarrow A=\frac{5}{231}\)
Đặt biểu thức đó là A
=> 2A = \(\frac{2}{9.11}+\frac{2}{11.13}+...+\frac{2}{61.63}=\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+...+\frac{1}{61}-\frac{1}{63}\)
\(=\frac{1}{9}-\frac{1}{63}=\frac{2}{21}\)
=> A = \(\frac{2}{21}.\frac{1}{2}=\frac{1}{21}\)
\(\frac{1}{9.11}+\frac{1}{11.13}+\frac{1}{13.15}+......+\frac{1}{97.99}\)
=\(\frac{1}{2}.\left(\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}+......+\frac{2}{97.99}\right)\)
=\(\frac{1}{2}.\left(\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+......+\frac{1}{97}-\frac{1}{99}\right)\)
=\(\frac{1}{2}.\left(\frac{1}{9}-\frac{1}{99}\right)=\frac{1}{2}.\left(\frac{11}{99}-\frac{1}{99}\right)=\frac{1}{2}.\frac{10}{99}=\frac{5}{99}\)
Tính :
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}+\frac{1}{13.15}\Rightarrow\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\right)=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{15}\right)=\frac{1}{2}\left(\frac{5}{15}-\frac{1}{15}\right)=\frac{1}{2}.\frac{4}{15}=\frac{2}{15}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}+\frac{1}{13.15}\)
=\(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\right)\)
=\(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{15}\right)=\frac{1}{2}.\frac{4}{15}=\frac{2}{15}\)
Ta có: \(x-\frac{20}{11\cdot13}-\frac{20}{13\cdot15}-...-\frac{20}{53\cdot55}=\frac{3}{11}\)
\(\Leftrightarrow x-10\cdot\left(\frac{2}{11\cdot13}+\frac{2}{13\cdot15}+...+\frac{2}{53\cdot55}\right)=\frac{3}{11}\)
\(\Leftrightarrow x-10\cdot\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)
\(\Leftrightarrow x-10\cdot\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{11}\)
\(\Leftrightarrow x-10\cdot\frac{4}{55}=\frac{3}{11}\)
\(\Leftrightarrow x-\frac{8}{11}=\frac{3}{11}\)
\(\Leftrightarrow x=\frac{3}{11}+\frac{8}{11}\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)thỏa mãn đề.
a. nhân cả hai vế của đẳng thức với 1/ 10 ta có
x/10 - (2/11.13 +2/13.15+...+2/53.55)=3/11 . 1/10
x/10 - (1/11-1/13+1/13-1/15 +...+1/53-1/55) =3/110
x/10 - (1/11 - 1/55) =3/110
x/10 -4/55 = 3/110
x/10=3/110 + 4/55
x. 1/10 =1/10
x= 1/10 : 1/10 =1
b) bạn nhân cả hai vế của đẳng thức với 1/2 rồi làm tương tự
a. nhân cả hai vế của đẳng thức với \(\frac{1}{10}\). Ta có:
\(\frac{x}{10}-\left(\frac{2}{11.13}+\frac{2}{13.15}+...\frac{2}{53.55}\right)=\frac{3}{11}.\frac{1}{10}\)
\(\frac{x}{10}-\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{110}\)
\(\frac{x}{10}-\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{110}\)
\(\frac{x}{10}-\frac{-4}{55}=\frac{3}{110}\)
\(\frac{x}{10}=\frac{3}{110}+\frac{4}{55}\)
\(x.\frac{1}{10}=\frac{1}{10}\)
\(x=\frac{1}{10}:\frac{1}{10}=1\)
b. cũng thế bạn nhân hai vế của đẳng thức với \(\frac{1}{2}\) rồi làm tương tự.
a, \(\frac{2020.125+1000}{126.2020-1020}=\frac{2020.125+1000}{2020.125+2020-1020}=1\)
b,\(\left(\frac{1}{11.13}+\frac{1}{13.15}+...+\frac{1}{19.21}\right).426+x=19\)
\(< =>\left(\frac{1}{11}-\frac{1}{21}\right).213+x=19\)
\(< =>\frac{2130}{231}+x=19\)
\(< =>x=19-\frac{2130}{231}=...\)
a)\(\frac{2020\cdot125+1000}{126\cdot2020-1020}=\frac{2020\cdot125+1000}{2020\cdot125+2020-1020}=\frac{2020\cdot125+1000}{2020\cdot125+1000}=1\)
b) \(\left(\frac{1}{11\cdot13}+\frac{1}{13\cdot15}+\frac{1}{15\cdot17}+\frac{1}{17\cdot19}+\frac{1}{19\cdot21}\right)\cdot426+x=19\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{2}{11\cdot13}+\frac{2}{13\cdot15}+\frac{2}{15\cdot17}+\frac{2}{17\cdot19}+\frac{2}{19\cdot21}\right)\cdot426+x=19\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+\frac{1}{17}-\frac{1}{19}+\frac{1}{19}-\frac{1}{21}\right)\cdot426+x=19\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{11}-\frac{1}{21}\right)\cdot426+x=19\)
\(\Leftrightarrow\frac{1}{2}\cdot\frac{10}{231}\cdot426+x=19\)
\(\Leftrightarrow\frac{710}{77}+x=19\)
\(\Leftrightarrow x=19-\frac{710}{77}=\frac{753}{77}\)
\(A=\frac{1}{11.13}+\frac{1}{13.15}+...+\frac{1}{54.55}\)
\(A=\frac{1}{2}.\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{54}-\frac{1}{55}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{11}-\frac{1}{55}\right)\)
\(A=\frac{1}{2}.\frac{4}{55}\)
\(A=\frac{2}{55}\)