Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(A=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5\sqrt{x}+1}{\sqrt{x}+3}\)
b: Để A=1/2 thì \(\dfrac{-5\sqrt{x}+1}{\sqrt{x}+3}=\dfrac{1}{2}\)
\(\Leftrightarrow-10\sqrt{x}+2=\sqrt{x}+3\)
hay \(x\in\varnothing\)
Câu 3:
\(C=\dfrac{3\sqrt{x}-x+x+9}{9-x}:\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-3\left(\sqrt{x}+3\right)}{x-9}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}\)
\(=\dfrac{-3\sqrt{x}}{2\sqrt{x}+4}\)
Để C<-1 thì C+1<0
=>-3 căn x+2 căn x+4<0
=>-căn x<-4
=>x>16
1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)
\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)
\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)
Dấu '=' xảy ra khi x=0
2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)
Dấu '=' xảy ra khi x=0
3: \(A=-2x-3\sqrt{x}+2< =2\)
Dấu '=' xảy ra khi x=0
5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)
Dấu '=' xảy ra khi x=1
b: \(B=\left(2-\dfrac{\sqrt{a}\left(\sqrt{a}-3\right)}{\sqrt{a}-3}\right)\cdot\left(2-\dfrac{\sqrt{a}\left(5-\sqrt{b}\right)}{-\left(5-\sqrt{b}\right)}\right)\)
\(=\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)=4-a\)
c: \(C=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}+2\right)\left(2-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\)
\(=\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)\)
=4-x
a/ ĐKXĐ: x>= 0 ; x khác 1
b/ \(A=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{8\sqrt{x}}{x-1}\right):\dfrac{4\sqrt{x}-8}{1-x}\)
\(=\left(\dfrac{\left(\sqrt{x}+1\right)^2}{x-1}-\dfrac{\left(\sqrt{x}-1\right)^2}{x-1}-\dfrac{8\sqrt{x}}{x-1}\right):\dfrac{8-4\sqrt{x}}{x-1}\)
\(=\dfrac{x+2\sqrt{x}+1-x+2\sqrt{2}-1-8\sqrt{x}}{x-1}\cdot\dfrac{x-1}{8-4\sqrt{x}}\)
\(=\dfrac{-4\sqrt{x}}{x-1}\cdot\dfrac{x-1}{4\left(2-\sqrt{x}\right)}=\dfrac{-4\sqrt{x}}{4\left(2-\sqrt{x}\right)}=-\dfrac{\sqrt{x}}{2-\sqrt{x}}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
Làm nốt bài 1 ::v
\(\dfrac{\sqrt{6}-\sqrt{3}}{1-\sqrt{2}}+\dfrac{3+6\sqrt{3}}{\sqrt{3}}-\dfrac{13}{\sqrt{3}+4}=\dfrac{-\sqrt{3}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\dfrac{\sqrt{3}\left(\sqrt{3}+6\right)}{\sqrt{3}}-\dfrac{13}{\sqrt{3}+4}=6-\dfrac{13}{\sqrt{3}+4}=\dfrac{11+6\sqrt{3}}{\sqrt{3}+4}\)
Bài 1:
a: ĐKXĐ: 2x+3>=0 và x-3>0
=>x>3
b: ĐKXĐ:(2x+3)/(x-3)>=0
=>x>3 hoặc x<-3/2
c: ĐKXĐ: x+2<0
hay x<-2
d: ĐKXĐ: -x>=0 và x+3<>0
=>x<=0 và x<>-3
a: \(P=\dfrac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{x+16}{\sqrt{x}+3}\)
b: Khi \(x=7-4\sqrt{3}\) vào P, ta được:
\(P=\dfrac{7-4\sqrt{3}+16}{2-\sqrt{3}+3}=\dfrac{23-4\sqrt{3}}{5-\sqrt{3}}\)
\(A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+3}{9-x}\right):\dfrac{1+\sqrt{x}}{\sqrt{x}-3}\)
\(A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{9-x}\right):\dfrac{1+\sqrt{x}}{\sqrt{x}-3}\)
\(A=\left[\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\right]:\dfrac{1+\sqrt{x}}{\sqrt{x}-3}\)
\(A=\left(\dfrac{-3\sqrt{x}-3}{x-9}\right):\dfrac{1+\sqrt{x}}{\sqrt{x}-3}=\dfrac{-3\left(1+\sqrt{x}\right)}{x-9}.\dfrac{\sqrt{x}-3}{1+\sqrt{x}}=\dfrac{-3}{\sqrt{x}+3}\)
A=\(\dfrac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\dfrac{2\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)
=\(\dfrac{x\sqrt{x}+26\sqrt{x}-19-2\sqrt{x}\left(\sqrt{x}+3\right)+\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
=\(\dfrac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-4\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
=\(\dfrac{x\sqrt{x}+16\sqrt{x}-x-16}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{\left(x+16\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{x+16}{\sqrt{x}+3}\)