\(\dfrac{3^2}{10.16}+\dfrac{3^2}{16.22}+\dfrac{3^2}{22.28}+...+\dfrac{3^2}{100.106}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=3^2\cdot\dfrac{1}{6}\left(\dfrac{6}{10\cdot16}+\dfrac{6}{16\cdot22}+...+\dfrac{6}{100\cdot106}\right)\)

\(=\dfrac{3}{2}\left(\dfrac{1}{10}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{22}+...+\dfrac{1}{100}-\dfrac{1}{106}\right)\)

\(=\dfrac{3}{2}\cdot\left(\dfrac{1}{10}-\dfrac{1}{106}\right)\)

\(=\dfrac{3}{2}\cdot\dfrac{24}{265}=\dfrac{36}{265}\)

3 tháng 8 2017

Đặt \(A=\dfrac{1}{1.2}+\dfrac{2}{2.4}+\dfrac{3}{4.7}+\dfrac{4}{7.11}+\dfrac{5}{11.16}+\dfrac{6}{16.22}\)

\(1A=1-\left(\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(\dfrac{1}{7}+\dfrac{1}{7}\right)+\left(\dfrac{1}{11}+\dfrac{1}{11}\right)+\left(\dfrac{1}{16}+\dfrac{1}{16}\right)-\dfrac{1}{22}\)\(1A=1-\dfrac{1}{22}\)

\(1A=\dfrac{22}{22}-\dfrac{1}{22}\)

\(1A=\dfrac{21}{22}\)

\(\dfrac{21}{22}\) không thể rút gọn

3 tháng 8 2017

\(A=\dfrac{1}{1\cdot2}+\dfrac{2}{2\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{4}{7\cdot11}+\dfrac{5}{11\cdot16}+\dfrac{6}{16\cdot22}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{22}\\ =1-\dfrac{1}{22}\\ =\dfrac{21}{22}\)

Vậy \(A=\dfrac{21}{22}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{22}+\dfrac{1}{22}-\dfrac{1}{29}\)

=1-1/29

=28/29

6 tháng 4 2017

a) \(\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)\left(1-\dfrac{1}{10}\right)...\left(1-\dfrac{1}{780}\right)\)

\(=\dfrac{2}{3}.\dfrac{5}{6}.\dfrac{9}{10}.....\dfrac{779}{780}\)\(=\)

b: \(A=5\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{26\cdot31}\right)\)

\(=5\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{26}-\dfrac{1}{31}\right)\)

\(=5\cdot\dfrac{30}{31}=\dfrac{150}{31}\)

c: \(C=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}\)

=1-1/16=15/16

21 tháng 7 2018

a, \(\dfrac{-7}{9}.2\dfrac{3}{4}\)

= \(\dfrac{-7}{9}.\dfrac{11}{4}\)

= \(\dfrac{-77}{36}\)

b, \(\dfrac{2}{3}+\dfrac{1}{3}.\dfrac{-2}{5}\)

= \(\dfrac{2}{3}+\dfrac{-2}{15}\)

= \(\dfrac{10}{15}+\dfrac{-2}{15}\)

= \(\dfrac{-8}{15}\)

c , \(\dfrac{2}{3}-4\left(\dfrac{1}{2}+\dfrac{3}{4}\right)\)

= \(\dfrac{2}{3}-4.\dfrac{5}{4}\)

= \(\dfrac{2}{3}-5\)

= \(\dfrac{-13}{3}\)

d, \(\left(\dfrac{1}{-3}+\dfrac{5}{6}\right).11-7\)

= \(\dfrac{1}{2}\) . 11 - 7

= \(\dfrac{11}{2}-\dfrac{14}{2}\)

= \(\dfrac{-3}{2}\)

e, \(\dfrac{3}{4}.15\dfrac{1}{3}-\dfrac{3}{4}.43\dfrac{1}{3}\)

= \(\dfrac{3}{4}.\left(15\dfrac{1}{3}-43\dfrac{1}{3}\right)\)

= \(\dfrac{3}{4}.-28\)

= \(-21\)

BT1: CMR: a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\) b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\) c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\) d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\) e) \(\dfrac{1}{3}<...
Đọc tiếp

BT1: CMR:

a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\)

b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\)

c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\)

d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\)

e) \(\dfrac{1}{3}< \dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)

f) \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}>\dfrac{7}{12}\)

BT2: Tính tổng

a) A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)

b) E=\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{200}\left(1+2+3+...+200\right)\)

BT3: Cho S=\(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)

CMR: 1 < S < 2

1
22 tháng 3 2017

bài này có trong sách Nâng cao và Phát triển bạn nhé

11 tháng 4 2017

\(A=\dfrac{2^4.3^3+2^3.3^4}{2^5.3^4-2^6.3^3}=\dfrac{2^3.3^3.\left(2+3\right)}{2^5.3^3.\left(3-2\right)}=\dfrac{2^3.3^3.5}{2^5.3^3.1}\)

\(=\dfrac{5}{2^2}=\dfrac{5}{4}\)

4 tháng 8 2017

Giải:

a) \(\dfrac{3}{5}x-\dfrac{2}{3}=\dfrac{-1}{2}\)

\(\Leftrightarrow\dfrac{3}{5}x=\dfrac{-1}{2}+\dfrac{2}{3}\)

\(\Leftrightarrow\dfrac{3}{5}x=\dfrac{1}{6}\)

\(\Leftrightarrow x=\dfrac{1}{6}:\dfrac{3}{5}\)

\(\Leftrightarrow x=\dfrac{5}{18}\)

Vậy \(x=\dfrac{5}{18}\).

b) \(\left(\dfrac{1}{2}-x\right).\dfrac{2}{3}=\dfrac{1}{8}\)

\(\Leftrightarrow\dfrac{1}{2}-x=\dfrac{1}{8}:\dfrac{2}{3}\)

\(\Leftrightarrow\dfrac{1}{2}-x=\dfrac{3}{16}\)

\(\Leftrightarrow x=\dfrac{1}{2}-\dfrac{3}{16}\)

\(\Leftrightarrow x=\dfrac{5}{16}\)

Vậy \(x=\dfrac{5}{16}\).

c) \(\left|2x-\dfrac{3}{7}\right|-\dfrac{1}{2}=\dfrac{3}{4}\)

\(\Leftrightarrow\left|2x-\dfrac{3}{7}\right|=\dfrac{3}{4}+\dfrac{1}{2}\)

\(\Leftrightarrow\left|2x-\dfrac{3}{7}\right|=\dfrac{5}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{3}{7}=\dfrac{5}{4}\\2x-\dfrac{3}{7}=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{47}{28}\\2x=-\dfrac{23}{28}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{47}{56}\\x=-\dfrac{23}{56}\end{matrix}\right.\)

Vậy \(x=\dfrac{47}{56}\) hoặc \(x=-\dfrac{23}{56}\).

d) \(\dfrac{2x+1}{3}=\dfrac{x-5}{2}\)

\(\Leftrightarrow2\left(2x+1\right)=3\left(x-5\right)\)

\(\Leftrightarrow4x+2=3x-15\)

\(\Leftrightarrow4x-3x=-15-2\)

\(\Leftrightarrow x=-17\)

Vậy \(x=-17\).

Chúc bạn học tốt!!!

4 tháng 8 2017

a. \(\dfrac{3}{5}x-\dfrac{2}{3}=-\dfrac{1}{2}\)

\(\Rightarrow x=\dfrac{5}{18}\)

b) \(\left(\dfrac{1}{2}-x\right).\dfrac{2}{3}=\dfrac{1}{8}\)

\(\Rightarrow x=\dfrac{5}{16}\)

c) \(\left|2x-\dfrac{3}{7}\right|-\dfrac{1}{2}=\dfrac{3}{4}\)

\(\Rightarrow\left|2x-\dfrac{3}{7}\right|=\dfrac{5}{4}\)

\(\Rightarrow\left[{}\begin{matrix}2x-\dfrac{3}{7}=\dfrac{5}{4}\\2x-\dfrac{3}{7}=-\dfrac{5}{4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{47}{56}\\x=\dfrac{-23}{56}\end{matrix}\right.\)

d) \(\dfrac{2x+1}{3}=\dfrac{x-5}{2}\)

\(\Rightarrow4x+2=3x-15\)

\(\Rightarrow x=-17\).

2 tháng 4 2017

1. Tìm \(x\):

a) \(\dfrac{x}{5}=\dfrac{5}{6}+\dfrac{-19}{30}\)

\(\dfrac{x}{5}=\dfrac{1}{5}\)

\(\Rightarrow x=1\)

b) \(\dfrac{-5}{6}-x=\dfrac{7}{12}-\dfrac{1}{3}.x\)

\(\dfrac{-5}{6}-\dfrac{7}{12}=x-\dfrac{1}{3}.x\)

\(x-\dfrac{1}{3}.x=\dfrac{-17}{12}\)

\(\dfrac{2}{3}.x=\dfrac{-17}{12}\)

\(x=\dfrac{-17}{12}:\dfrac{2}{3}\)

\(x=\dfrac{-17}{8}\)

c) \(2016^3.2016^x=2016^8\)

\(2016^x=2016^8:2016^3\)

\(2016^x=2016^{8-3}\)

\(2016^x=2016^5\)

\(\Rightarrow x=5\)

d) \(\left(x+\dfrac{3}{4}\right):\dfrac{5}{2}=3\dfrac{1}{2}\)

\(\left(x+\dfrac{3}{4}\right):\dfrac{5}{2}=\dfrac{7}{2}\)

\(\left(x+\dfrac{3}{4}\right)=\dfrac{7}{2}.\dfrac{5}{2}\)

\(x+\dfrac{3}{4}=\dfrac{35}{4}\)

\(x=\dfrac{35}{4}-\dfrac{3}{4}\)

\(x=\dfrac{32}{4}=8\)

e) \(\left(2,8.x-2^5\right):\dfrac{2}{3}=3^2\)

\(\left(2,8.x-2^5\right)=9.\dfrac{2}{3}\)

\(2,8.x-2^5=6\)

\(2,8.x=6+32\)

\(2,8.x=38\)

\(x=38:2,8\)

\(x=\dfrac{95}{7}\)

f) \(\dfrac{4}{7}.x-\dfrac{2}{3}=\dfrac{2}{5}\)

\(\dfrac{4}{7}.x=\dfrac{2}{5}+\dfrac{2}{3}\)

\(\dfrac{4}{7}.x=\dfrac{16}{15}\)

\(x=\dfrac{16}{15}:\dfrac{4}{7}\)

\(x=\dfrac{28}{15}\)

g) \(\left(\dfrac{3x}{7}+1\right):\left(-4\right)=\dfrac{-1}{28}\)

\(\left(\dfrac{3x}{7}+1\right)=\dfrac{-1}{28}.\left(-4\right)\)

\(\dfrac{3x}{7}+1=\dfrac{1}{7}\)

\(\dfrac{3x}{7}=\dfrac{1}{7}-1\)

\(\dfrac{3x}{7}=\dfrac{-6}{7}\)

\(\Rightarrow3x=-6\)

\(x=\left(-6\right):3\)

\(x=-2\)

2 tháng 4 2017

2. Thực hiện phép tính:

a) \(\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{2}{3}-\dfrac{1}{3}:\dfrac{3}{4}+1\dfrac{4}{5}\)

\(=\dfrac{1}{2}.\left(\dfrac{2}{3}+1\right)-\dfrac{1}{3}:\dfrac{3}{4}+\dfrac{9}{5}\)

\(=\dfrac{1}{2}.\dfrac{5}{3}-\dfrac{1}{3}:\dfrac{3}{4}+\dfrac{9}{5}\)

\(=\dfrac{5}{6}-\dfrac{4}{9}+\dfrac{9}{5}\)

\(=\dfrac{7}{18}+\dfrac{9}{5}\)

\(=\dfrac{197}{90}\)

b) \(\dfrac{7.5^2-7^2}{7.24+21}\)

\(=\dfrac{7.25-7.7}{7.24+7.3}\)

\(=\dfrac{7.\left(25-7\right)}{7.\left(24+3\right)}\)

\(=\dfrac{7.18}{7.27}\)

\(=\dfrac{2}{3}\)

c) \(\dfrac{2}{3}+\dfrac{1}{3}.\left(\dfrac{-4}{9}+\dfrac{5}{6}\right):\dfrac{7}{12}\)

\(=\dfrac{2}{3}+\dfrac{1}{3}.\dfrac{7}{18}:\dfrac{7}{12}\)

\(=\dfrac{2}{3}+\dfrac{7}{54}:\dfrac{7}{12}\)

\(=\dfrac{2}{3}+\dfrac{2}{9}\)

\(=\dfrac{8}{9}\)