Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(A=\dfrac{0,75-0,6+\dfrac{3}{7}+\dfrac{3}{13}}{2,75-2,2+\dfrac{11}{7}+\dfrac{11}{13}}=\dfrac{3\left(0,25-0,2+\dfrac{1}{7}+\dfrac{1}{13}\right)}{11\left(0,25-0,2+\dfrac{1}{7}+\dfrac{1}{13}\right)}=\dfrac{3}{11}\)
Vậy \(A=\dfrac{3}{11}\)
b. \(B=\dfrac{2^{12}\cdot13+2^{12}\cdot65}{2^{10}\cdot104}+\dfrac{3^{10}\cdot11+3^{10}\cdot5}{3^9\cdot2^4}=\dfrac{2^{12}\left(13+65\right)}{2^{10}\cdot104}+\dfrac{3^{10}\left(11+5\right)}{3^9\cdot2^4}=\dfrac{2^{12}\cdot78}{2^{10}\cdot104}+\dfrac{3^{10}\cdot16}{3^9\cdot16}=\dfrac{2^2\cdot3}{1\cdot4}+3=\dfrac{12}{4}+3=3+3=6\)
Vậy \(B=6\)
\(\dfrac{2^{19}+27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(=\dfrac{2^{19}+\left(3^3\right)^3+5.3.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(3.4\right)^{10}}\)
\(=\dfrac{2^{19}.3^9+3.5.2^{18}.3^8}{3^9.2^9.2^{10}+3^{10}.4^{10}}\)
\(=\dfrac{2^{19}.3^9+5.2^{18}.3^9}{3^9.2^{19}+3^{10}.\left(2^2\right)^{10}}\)
\(=\dfrac{2^{18}.3^9.\left(2.5\right)}{3^9.2^{19}+3^{10}.2^{20}}\)
\(=\dfrac{2^{18}.3^9.7}{2^{19}.3^9.\left(1+3.2\right)}\)
\(=\dfrac{7}{2\left(1+6\right)}\)
\(=\dfrac{7}{2.7}\)
\(=\dfrac{1}{2}\)
a) \(5^{20}và2550^{10}\)
\(5^{20}=\left(5^2\right)^{10}=25^{10}< 2550^{10}\)
=> \(5^{20}< 2550^{10}\)
b) \(999^{10}và999999^5\)
\(999^{10}=\left(999^2\right)^5=1998^5< 999999^5\)
=> \(999^{10}< 999999^5\)
c) \(\left(\dfrac{-1^{300}}{5}\right)và\left(\dfrac{-1^{500}}{3}\right)\)
\(\left(\dfrac{-1^{300}}{5}\right)=\dfrac{-1}{5}\)
\(\left(\dfrac{-1^{500}}{3}\right)=\dfrac{-1}{3}\)
\(\dfrac{-1}{5}=\dfrac{-3}{15}\)
\(\dfrac{-1}{3}=\dfrac{-5}{15}\)
=> \(\dfrac{-3}{15}>\dfrac{-5}{15}\)
=> \(\left(\dfrac{-1^{300}}{5}\right)>\left(\dfrac{-1^{500}}{3}\right)\)
Bài 1:
a, \(A=3^{100}+3^{99}+...+3+1\)
\(\Rightarrow3A=3^{101}+3^{100}+...+3^2+3\)
\(\Rightarrow3A-A=\left(3^{101}+3^{100}+...+3^2+3\right)-\left(3^{100}+3^{99}+...+3+1\right)\)
\(\Rightarrow2A=3^{101}+1\Rightarrow A=\dfrac{3^{101}+1}{2}\)
b, \(B=\dfrac{15^9.2^{18}.9^8}{3^{15}.4^8.25^4}=\dfrac{3^9.5^9.2^{18}.3^{16}}{3^{15}.2^{16}.5^8}\)
\(=3^{10}.5.2^2=472392\)
c, \(C=\dfrac{2^{10}.10^{17}.7^9}{5^{15}.14^9.64^9}=\dfrac{2^{10}.2^{17}.5^{17}.7^9}{5^{15}.2^9.7^9.2^{54}}\)
\(=\dfrac{5^2}{2^{36}}\)
Chúc bạn học tốt!!!
1.
\(A=3^{100}+3^{99}+3^{98}+...+3^2+3+1\\ A=\dfrac{3-1}{2}\cdot\left(3^{100}+3^{99}+3^{98}+...+3^2+3+1\right)\\ =\dfrac{\left(3-1\right)\cdot\left(3^{100}+3^{99}+3^{98}+...+3^2+3+1\right)}{2}\\ =\dfrac{3^{101}-3^{100}+3^{100}-3^{99}+...+3^2-3+3-1}{2}\\ =\dfrac{3^{101}-1}{2}\)
\(B=\dfrac{15^9\cdot2^{18}\cdot9^8}{3^{15}\cdot4^8\cdot25^4}\\ =\dfrac{\left(3\cdot5\right)^9\cdot2^{18}\cdot\left(3^2\right)^8}{3^{15}\cdot\left(2^2\right)^8\cdot\left(5^2\right)^4}\\ =\dfrac{3^9\cdot5^9\cdot2^{18}\cdot3^{16}}{3^{15}\cdot2^{16}\cdot5^8}\\ =\dfrac{3^9\cdot5\cdot2^2\cdot3}{1\cdot1\cdot1}\\ =3^{10}\cdot5\cdot2^2\\ =59049\cdot5\cdot4\\ =59049\cdot\left(5\cdot4\right)\\ =59049\cdot20\\ =1180980\)
\(C=\dfrac{2^{10}\cdot10^{17}\cdot7^9}{5^{15}\cdot14^9\cdot64^9}\\ =\dfrac{2^{10}\cdot\left(2\cdot5\right)^{17}\cdot7^9}{5^{15}\cdot\left(2\cdot7\right)^9\cdot\left(2^6\right)^9}\\ =\dfrac{2^{10}\cdot2^{17}\cdot5^{17}\cdot7^9}{5^{15}\cdot2^9\cdot7^9\cdot2^{54}}\\ =\dfrac{2\cdot1\cdot5^2\cdot1}{1\cdot1\cdot1\cdot2^{37}}\\ =\dfrac{5^2}{2^{36}}\\ =\dfrac{25}{2^{36}}\)
a,\(\dfrac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)=\(\dfrac{2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{6^9.2^{10}+6^{10}.2^{10}}\)
=\(\dfrac{2^{19}.3^9+2^{18}.3^9.5}{6^9.2^{10}.\left(1+6\right)}\)=\(\dfrac{2^{18}.3^9.\left(2+5\right)}{6^9.2^{10}.7}\)=\(\dfrac{2^{18}.3^9}{6^9.2^{10}}=\dfrac{2^{10}.2^8.3^9}{2^9.3^9.2^{10}}=\dfrac{2^8}{2^8.2}=\dfrac{1}{2}\)
b, \(\dfrac{\left(\dfrac{-1}{2}\right)^3-\left(\dfrac{3}{4}\right)^3.\left(-2\right)^2}{2.\left(-1\right)^5+\left(\dfrac{3}{4}\right)^2-\dfrac{3}{8}}=\dfrac{\dfrac{-1}{8}-\dfrac{27}{64}.4}{-2+\dfrac{9}{16}-\dfrac{3}{8}}=\dfrac{\dfrac{-1}{8}-\dfrac{27}{16}}{\dfrac{-23}{16}-\dfrac{3}{8}}=\dfrac{\dfrac{-29}{16}}{\dfrac{-29}{16}}=1\)
\(\dfrac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\\ =\dfrac{2^{19}.3^9+5.2^{18}.3^9}{2^9.3^9+2^{20}.3^{10}}\\ =\dfrac{2^{18}.3^9\left(2+5\right)}{2^9.3^9\left(2^{11}.3+1\right)}\\ =\dfrac{2^9.7}{2^9.12+1}=\dfrac{7}{13}\)
\(\dfrac{\text{45^{10^{ }}}.5^{10}}{75^{10}}=\dfrac{9^{10}.5^{10}.5^{10}}{5^{10}.5^{10}.3^{10}}=\dfrac{9^{10}}{3^{10}}=3^{10}\)
\(\dfrac{\left(0,8\right)^5}{\left(0,4\right)^6}=\dfrac{2^5.\left(0,4\right)^5}{\left(0,4\right)^6}=\dfrac{2^5}{0,4}=\dfrac{32}{0,4}=80\)
TA CÓ
A=\(\dfrac{3^{10}.11+3^{10}.5}{3^9.2^4}=\dfrac{3^{10}.\left(11+5\right)}{3^9.2^4}=\dfrac{3^{10}.16}{3^9.16}=3\)
vậy A=3
chúc bạn học tốt
\(A=\dfrac{3^{10}.11+3^{10}.5}{3^9.2^4}=\dfrac{3^{10}\left(10+5\right)}{3^9.2^4}=\dfrac{3^{10}.15}{3^9.2^4}=\dfrac{3.15}{2^4}=\dfrac{45}{16}\)