Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2^7.3^6}{6^5.8^2}\)= \(\frac{2^7.3^6}{3^5.2^5.2^6}\)=\(\frac{2^7.3^6}{3^5.2^{11}}\)=\(\frac{3}{2^4}\)=\(\frac{3}{16}\)
đó là ý kiến của mình
\(a.\frac{2^7\times9^3}{6^5\times8^2}\)
\(=\frac{3}{16}\)
\(b.\frac{6^3+3\times6^2+3^3}{-13}\)
\(-\frac{333}{13}\)
\(\frac{2^7\cdot9^3}{6^5\cdot8^2}\)
\(=\frac{2^7\cdot3^6}{3^5\cdot2^5\cdot2^6}\)
\(=\frac{3}{16}\)
\(\frac{2^5.9^4}{6^6.8^3}=\frac{2^5.3^8}{2^6.3^6.2^9}=\frac{3^2}{2.2^9}=\frac{9}{2^{10}}=\frac{9}{1024}\)
Hok tốt
......................
:V Làm sai hết rồi sai ngay từ bước đầu tiên.
\(\frac{1}{3.4}-\frac{1}{4.5}-\frac{1}{5.6}-....-\frac{1}{9.10}\)
\(=\frac{1}{3.4}-\left(\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{9.10}\right)\)
\(=\frac{1}{12}-\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{1}{12}-\left(\frac{1}{4}-\frac{1}{10}\right)\)
\(=\frac{1}{12}-\frac{3}{20}\)
\(=\frac{-11}{12}\)
\(\frac{1}{3.4}-\frac{1}{4.5}-...-\frac{1}{9.10}\)
= \(-\left(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
= \(-\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)
= \(-\left(\frac{1}{3}-\frac{1}{10}\right)\)
= \(-\frac{7}{30}\)
\(\dfrac{2^{15}.9^4}{6^6.8^3}=\dfrac{2^{15}.\left(3^2\right)^4}{2^6.3^6.\left(2^3\right)^3}=\dfrac{2^{15}.3^8}{2^6.3^6.2^9}=\dfrac{2^{15}.3^8}{2^{15}.3^6}=\dfrac{1.3^2}{1.1}=3^2=9\)
Chúc Bạn Học Tốt!!!
- Ta có:
\(\dfrac{2^{15}.9^4}{6^6.8^3}=\dfrac{2^{15}.\left(3^2\right)^4}{2^6.3^6.\left(2^3\right)^3}=\dfrac{2^{15}.3^8}{2^6.3^6.2^9}=\dfrac{2^{15}.3^8}{2^{15}.3^6}=3^2\)
- Vậy \(\dfrac{2^{15}.9^4}{6^6.8^3}=3^2\)
\(A=\dfrac{2^{13}.9^5}{6^8.8^3}=\dfrac{2^{13}.3^{10}}{3^8.2^8.2^9}=\dfrac{2^{13}.3^{10}}{3^8.2^{17}}=\dfrac{3^2}{2^4}=\dfrac{9}{16}\)