K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2018

\(A=\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)

\(2A=2\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\right)\)

⇔ 2A = \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{97.99}\)

⇔ 2A = \(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\)

⇔ 2A = \(\dfrac{1}{3}-\dfrac{1}{99}\)

⇔ 2A = \(\dfrac{32}{99}\)

⇔ A = \(\dfrac{32}{99}:2\)

⇔ A = \(\dfrac{16}{99}\)

1 tháng 1 2018

\(A=\dfrac{1}{3.5}+\dfrac{1}{5.7}+......+\dfrac{1}{97.99}\)

\(\Leftrightarrow2A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+......+\dfrac{2}{97.99}\)

\(\Leftrightarrow2A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+.....+\dfrac{1}{97}-\dfrac{1}{99}\)

\(\Leftrightarrow2A=\dfrac{1}{3}-\dfrac{1}{99}\)

\(\Leftrightarrow2A=\dfrac{32}{99}\)

\(\Leftrightarrow A=\dfrac{16}{99}\)

11 tháng 2 2018

\(A=\dfrac{1}{3.5} +\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)

\(\Rightarrow2A=2\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\right)\)

\(\Rightarrow2A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{97.99}\)

\(\Rightarrow2A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\)

\(\Rightarrow2A=\dfrac{1}{3}-\dfrac{1}{99}=\dfrac{32}{99}\)

\(\Rightarrow A=\dfrac{32}{99}:2=\dfrac{16}{99}\)

28 tháng 3 2017

b) Vì \(\left|x+\dfrac{1}{1.3}\right| \ge0;\left|x+\dfrac{1}{3.5}\right|\ge0;...;\left|x+\dfrac{1}{97.99}\right|\ge0\)

\(\Rightarrow50x\ge0\Rightarrow x\ge0\)

Khi đó: \(\left|x+\dfrac{1}{1.3}\right|=x+\dfrac{1}{1.3};\left|x+\dfrac{1}{3.5}\right|=x+\dfrac{1}{3.5};...;\left|x+\dfrac{1}{97.99}\right|=x+\dfrac{1}{97.99}\left(1\right)\)

Thay (1) vào đề bài:

\(x+\dfrac{1}{1.3}+x+\dfrac{1}{3.5}+...+x+\dfrac{1}{97.99}=50x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\right)=50x\)

\(\Rightarrow49x+\left[\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\right]=50x\)

\(\Rightarrow49x+\dfrac{16}{99}=50x\)

\(\Rightarrow x=\dfrac{16}{99}\)

Vậy \(x=\dfrac{16}{99}.\)

28 tháng 3 2017

thank bn nhìu nhìu vui

\(B=-\dfrac{1}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\right)\)

\(=\dfrac{-1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{100}{101}=-\dfrac{50}{101}\)

31 tháng 10 2022

6:

\(4D=2^2+2^4+...+2^{202}\)

=>3D=2^202-1

hay \(D=\dfrac{2^{202}-1}{3}\)

7: \(=\dfrac{1}{2}\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{97\cdot99}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{32}{99}=\dfrac{16}{99}\)

\(S=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+\dfrac{1}{7\cdot9}-\left(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+\dfrac{1}{8\cdot10}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}\right)-\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+\dfrac{2}{8\cdot10}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{9}\right)-\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{10}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{8}{9}-\dfrac{1}{2}\cdot\dfrac{2}{5}\)

\(=\dfrac{4}{9}-\dfrac{1}{5}\)

\(=\dfrac{11}{45}\)

23 tháng 9 2021

\(\Leftrightarrow\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{98}{99}\\ \Leftrightarrow1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2x-1}-\dfrac{1}{2x+1}=\dfrac{98}{99}\\ \Leftrightarrow1-\dfrac{1}{2x+1}=\dfrac{98}{99}\\ \Leftrightarrow\dfrac{2x+1-1}{2x+1}=\dfrac{98}{99}\Leftrightarrow198x=196x+98\\ \Leftrightarrow2x=98\Leftrightarrow x=49\)

15 tháng 10 2022

Nguyễn Hoàng Minh cho hỏi 2x + 1 - 1 đâu ra v ạ??

\(=1-\dfrac{1}{2}\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{55\cdot57}\right)\)

\(=1-\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{55}-\dfrac{1}{57}\right)\)

\(=1-\dfrac{1}{2}\cdot\dfrac{18}{57}=1-\dfrac{9}{57}=\dfrac{48}{57}=\dfrac{16}{19}\)

23 tháng 11 2021

\(\Leftrightarrow\dfrac{1}{2}\left[\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2x-1\right)\left(2x+1\right)}\right]=\dfrac{49}{99}\\ \Leftrightarrow1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2x-1}-\dfrac{1}{2x+1}=\dfrac{98}{99}\\ \Leftrightarrow1-\dfrac{1}{2x+1}=\dfrac{98}{99}\\ \Leftrightarrow\dfrac{1}{2x+1}=\dfrac{1}{99}\\ \Leftrightarrow2x+1=99\Leftrightarrow x=49\)

23 tháng 11 2021

Em cảm ơn.

15 tháng 6 2023

\(1-\dfrac{2}{3.5}-\dfrac{2}{5.7}-...-\dfrac{2}{61.63}-\dfrac{2}{63.65}\)

\(=1-\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{63}-\dfrac{1}{65}\right)\)

\(=1-\left(\dfrac{1}{3}-\dfrac{1}{65}\right)\)

\(=1-\dfrac{62}{195}\)

\(=\dfrac{133}{195}\)

=1-(1/3-1/5+1/5-1/7+...+1/61-1/63)

=1-20/63=43/63