\(A=\dfrac{1}{^{ }3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\) và \(B=...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2020

Ta có: \(3\cdot A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)

Do đó: 

\(3\cdot A-A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}-\dfrac{1}{3}-\dfrac{1}{3^2}-...-\dfrac{1}{3^{100}}\)

hay \(2\cdot A=1-\dfrac{1}{3^{100}}\)

\(\Leftrightarrow A=\left(1-\dfrac{1}{3^{100}}\right):2\)

\(\Leftrightarrow A=\left(1-\dfrac{1}{3^{100}}\right)\cdot\dfrac{1}{2}\)

\(\Leftrightarrow A=\dfrac{1}{2}-\dfrac{1}{2\cdot3^{100}}< \dfrac{1}{2}\)

hay A<B

25 tháng 12 2020

 

 

Ta có: 3A=1+131+132+...+13993⋅A=1+131+132+...+1399

A=13+132+...+13100A=13+132+...+13100

Do đó: 

3AA=1+131+132+...+1310013132...131003⋅A−A=1+131+132+...+13100−13−132−...−13100

hay 2A=1131002⋅A=1−13100

A=(113100):2⇔A=(1−13100):2

A=(113100)12⇔A=(1−13100)⋅12

A=12123100<12⇔A=12−12⋅3100<12

hay A<B

6 tháng 10 2018

a, Ta có :\(A=\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}+\dfrac{1}{2^{50}}\\ \Rightarrow2A=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\\ \Rightarrow2A-A=\left(1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{50}}\right)\\ \Rightarrow A=1-\dfrac{1}{2^{50}}< 1\\ \Rightarrow A< 1\) Vậy \(A< 1\)

b, Ta có :

\(B=\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\\ \Rightarrow3B=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\\ \Rightarrow3B-B=\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\\ \Rightarrow2B=1-\dfrac{1}{3^{100}}< 1\\ \Rightarrow B< \dfrac{1}{2}\)Vậy \(B< \dfrac{1}{2}\)

c, Ta có :

\(C=\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\\ \Rightarrow4C=1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\\\Rightarrow4C-C=\left(1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\right)-\left(\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\right)\\ \Rightarrow3C=1-\dfrac{1}{4^{1000}}< 1\\ \Rightarrow C< \dfrac{1}{3}\)Vậy \(C< \dfrac{1}{3}\)

6 tháng 10 2018

Mình làm rồi đó !!!!!Trần Thị Hương Lan

30 tháng 9 2017

a/ Đặt :

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+.........+\dfrac{1}{3^{50}}\)

\(\Leftrightarrow3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+.......+\dfrac{1}{3^{49}}\)

\(\Leftrightarrow3A-A=\left(1+\dfrac{1}{3}+....+\dfrac{1}{3^{49}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+....+\dfrac{1}{3^{50}}\right)\)

\(\Leftrightarrow2A=1-\dfrac{1}{3^{50}}\)

còn sao nx thì mk chịu =.=

AH
Akai Haruma
Giáo viên
9 tháng 7 2018

a) \(2^{2014}\)\(3^{1343}\)

Ta có:

\(2^{2014}=(2^3)^{\frac{2014}{3}}=8^{\frac{2014}{3}}< 9^{\frac{2014}{3}}\)

\(3^{1343}=(3^2)^{\frac{1343}{2}}=9^{\frac{1343}{2}}> 9^{\frac{2014}{3}}\)

\(\rightarrow 2^{2014}< 3^{1343}\)

b) \(31^{11}\)\(17^{44}\)

Có: \(17^{44}=(17^4)^{11}> (17.2)^{11}>31^{11}\)

AH
Akai Haruma
Giáo viên
9 tháng 7 2018

c)

\(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{50}}\)

\(\Rightarrow 2A=1+\frac{1}{2^1}+\frac{1}{2^2}+..+\frac{1}{2^{49}}\)

Lấy vế sau trừ vế trước thu được:

\(2A-A=1-\frac{1}{2^{50}}< 1\)

\(\Leftrightarrow A< 1\)

d) \(B=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)

\(\Rightarrow 3B=1+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

Lấy vế sau trừ vế trước:

\(\Rightarrow 3B-B=1-\frac{1}{3^{100}}< 1\)

\(\Leftrightarrow 2B< 1\Rightarrow B< \frac{1}{2}\)

28 tháng 6 2017

Bài 1 :

\(A=\dfrac{\dfrac{3}{7}-\dfrac{3}{17}+\dfrac{3}{37}}{\dfrac{5}{7}-\dfrac{5}{17}+\dfrac{5}{37}}+\dfrac{2}{5}=\dfrac{3\left(\dfrac{1}{7}-\dfrac{1}{17}+\dfrac{1}{37}\right)}{5\left(\dfrac{1}{7}-\dfrac{1}{17}+\dfrac{1}{37}\right)}+\dfrac{2}{5}=\dfrac{3}{5}+\dfrac{2}{5}=\dfrac{5}{5}=1\)

26 tháng 7 2017

a, \(\dfrac{1}{2!}+\dfrac{2}{3!}+...+\dfrac{99}{100!}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}< 1\)

\(\Rightarrowđpcm\)

d, \(D=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow3D=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)

\(\Rightarrow3D-D=\left(1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)\)

\(\Rightarrow2D=1-\dfrac{1}{3^{99}}\)

\(\Rightarrow D=\dfrac{1}{2}-\dfrac{1}{3^{99}.2}< \dfrac{1}{2}\)

\(\Rightarrowđpcm\)

26 tháng 7 2017

\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}-1-\dfrac{1}{2}-...-\dfrac{1}{25}\)

\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)

\(\Rightarrowđpcm\)

1 tháng 3 2017

\(\Rightarrow-A=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{100^2}\right)\)

\(-A=\dfrac{3}{2^2}.\dfrac{8}{3^2}...\dfrac{9999}{100^2}\)

\(-A=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}...\dfrac{99.101}{100.100}\)

\(-A=\dfrac{1.2...99}{2.3...100}.\dfrac{3.4...101}{2.3...100}\)

\(-A=\dfrac{1}{100}.\dfrac{101}{2}=\dfrac{101}{200}\)

\(\Rightarrow A=\dfrac{-101}{200}\)

\(\dfrac{-101}{200}< \dfrac{-100}{200}=\dfrac{-1}{2}\)

\(\Rightarrow A< \dfrac{-1}{2}\)

1 tháng 3 2017

mơn ạ thảo

6 tháng 8 2017

a) \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+............+\dfrac{1}{2^{100}}\)

\(\Leftrightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+........+\dfrac{1}{2^{99}}\)

\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2}+.........+\dfrac{1}{2^{99}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{100}}\right)\)

\(\Leftrightarrow A=1-\dfrac{1}{2^{100}}\)

30 tháng 4 2018

Nguyễn Thanh Hằng Tiếp đi Hằng