K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2016

a, aaa = a . 111 = a . 3 . 37 luôn chia hết cho 37

aaaaaa: làm tương tự

9 tháng 10 2016

a) aaa = a . 111 = a .3 . 37 => chia hết cho 3

aaaaaa = a . 111111 = a . 3 . 37037 => chia hết cho 3 

 

        

 

18 tháng 9 2016

a ) aaa=a.111=a.(3.37)

          =>aaa bao giờ cũng chia hết cho 37

b) aaaaaa=a.111111=a.(3.37037)

=> aaaaaa bao giờ cũng chia hết cho 3

c) abcabc=abc.1001=abc.(7.13.11)

=> abcabc bao giờ cũng chia hết cho 13;11

d) ab+ba=(10a+b)+(10b+a)=(10a+a)+(10b+b)=11a+11b

=> ab+ba chia hết cho 11

ủng hộ nha

18 tháng 9 2016

a) aaa = 111a = 37 . 3 . a 

b) aaaaaa = 111111a = 37037 . 3 . a 

c) abcabc = 1001abc = 77.13 . abc 

abcabc = 1001abc = 77.13.abc = 7 .11.13.abc 

d) (ab + ba) = 10a + b + 10b + a =11a + 11b = 11.(a+b) 

9 tháng 7 2018

Câu 5 là chỗ cuối cùng là chia hết cho 7 nha .mình quên ghi

27 tháng 12 2017

 aaa  = 100a + 10a + a

        = a×111

       = a×3×37 \(⋮\)37

\(\Rightarrow\)aaa \(⋮\)37.

27 tháng 12 2017

1. Ta có: aaa = 111 * a

Mà 111 chia hết cho 37 

=> Số có dạng aaa luôn chia hết cho 37

15 tháng 7 2019

a) Ta có : aaa = a . 111 = a . 37 . 3 \(⋮\)37

=> aaa \(⋮\)37 (đpcm)

b) Ta có: aaaaaa = a . 111111 = a . 37 . 3003 \(⋮\)37

=> aaaaaa \(⋮\)37 (đpcm)

16 tháng 8 2016

1) aaa=a.111=a.3.37

Do đó aaa chia hết cho 37 ( đpcm)

2) Gọi 2 số có cùng số dư khi chia cho 7 là a và b ( cùng dư r, r<7)

Khi đó a=7k+r   ,   b=7h+r

a-b=(7k+r)-(7h+r)=7k+r-7h-r=7k-7h=7(k-h)

=> ĐPCM

3) ab-ba=(10a+b)-(10b+a)=10a+b-10b-a=9a-9b=9(a-b)

Rỗ ràng chia hết cho 9   =>ĐPCM

16 tháng 8 2016

Câu 1: aaa = a.111 = a.3.37 => chia hết cho 37

Câu 2:

Gọi a và b là hai số có cùng số dư m khi chia hết cho 7 nên

a-m chia hết cho 7

b-m chia hết cho 7

=> (a-m)-(b-m) = a-b chia hết cho 7

Câu 3: (ab - ba)=10.a+b-10.b-a=9.a-9.b=9(a-b) chia hết cho 9

AH
Akai Haruma
Giáo viên
29 tháng 1 2022

Bài 4:

$A+2=1+2+2^2+2^3+...+2^{11}$

$=(1+2)+(2^2+2^3)+....+(2^{10}+2^{11})$

$=(1+2)+2^2(1+2)+....+2^{10}(1+2)$

$=(1+2)(1+2^2+....+2^{10})$

$=3(1+2^2+...+2^{10})\vdots 3$

Vậy $A+2\vdots 3$ nên $A$ không chia hết cho $3$

AH
Akai Haruma
Giáo viên
29 tháng 1 2022

Bài 5:

$n^2+n+1=n(n+1)+1$
Vì $n,n+1$ là hai số tự nhiên liên tiếp nên sẽ tồn tại một số chẵn và 1 số lẻ

$\Rightarrow n(n+1)$ chẵn 

$\Rightarrow n^2+n+1=n(n+1)+1$ lẻ (điều phải chứng minh) 

 

1 tháng 8 2015

1/ Gọi 2 số đó là a,b thỏa mãn a:7=k dư c và b/7=m dư c. =>a=7k+c và b=7m+c

a-b=7k+c-(7m+c)=7k-7m=7(k-m) chia hết cho 7

2/ Ta có aaa chia hết cho 111 và 111=3.37 chia hết cho 37 nên aaa chia hết cho 37.

c/ ab-ba=10a+b-10b-a=9a-9b=9(a-b) chia hết cho 9

7 tháng 11 2017

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

tôi mong các bn đừng làm như vậy !!!

24 tháng 10 2016

\(\overline{aaaa}\) gạch trên đầu bn zô \(fx\) vô hình nì nè Hỏi đáp Toán

24 tháng 10 2016

Tó biết làm mỗi 2 bài trên thui

1 ) aaa aaa = a . 111 111 = a . 11 . 10101 => chia hết cho 11

2 ) abc abc = abc . 1001 = abc . 11 . 91 = > chia hết cho 11

làm theo cách thầy dạy chứ hoàn toàn ko nhìn sách giải nhé