\(S=1-7+13-19+25-31+..........\)

Tìm số hạng thứ 2011 của tổng S và...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2018

a) Ta thấy các số có số thứ tự lẻ đứng trước luôn là dấu cộng nên số thứ 2011 đứng trước nó là dấu cộng

Hiệu 1 khoảng cách là : 6 đơn vị

Vì số số hạng luôn hơn số số khoảng cách 1 đơn vì nên hiệu giữa số thứ 1 và số thứ 2011 là :

              ( 2011 - 1 ) . 6 = 12060 ( đơn vị )

Suy ra tổng của 2011 số hạng đầu tiên là :

\(S=1-7+13-19+25-31+........+12061\)

\(S=\left(1-7\right)+\left(13-19\right)+\left(25-31\right)+......+\left(12049-12055\right)+12061\)

\(S=\left(-6\right)+\left(-6\right)+\left(-6\right)+.....+\left(-6\right)+12061\)

\(S=\left(-6\right).1005+12061\)

\(S=\left(-6030\right)+12061\)

\(S=6031\)

Vậy số hạng thứ 2011 là số 12061 và tổng của 2011 số hạng đầu tiên là 6031

b) Ta có :

\(5^{30}=\left(5^3\right)^{10}=125^{10}\)

Vì \(125>124\)nên \(125^{10}>124^{10}\)

Mà \(5^{30}=125^{10}\)nên \(5^{30}>124^{10}\)

Vậy \(5^{30}>124^{10}\)

30 tháng 7 2016

Câu 2c.
\(E=1+5^2+5^4+5^6+...+5^{100}\)
\(=\frac{5^2\cdot\left(1+5^2+5^4+5^6+...+5^{100}\right)-\left(1+5^2+5^4+5^6+...+5^{100}\right)}{24}\)
\(=\frac{\left(5^2+5^4+5^6+5^8+...+5^{102}\right)-\left(1+5^2+5^4+5^6+...+5^{100}\right)}{24}\)
\(=\frac{5^{102}-1}{24}\)

30 tháng 7 2016

Bài 1 :

a) Các số lẻ hơn kém nhau hai đơn vị

Số hạng đầu tiên là: 369-(134-1).2=103

b) Tổng S là : (369+103) : 2 .134=31624

10 tháng 7 2017

Câu 1: 

a) Số hạng thứ 100 của tổng là: 

(100-1) * 3 + 5 = 302

b) Tổng 100 số hạng đầu tiên là: 

(302 + 5) * 100 : 2 = 15350

                  Đ/S: a) 302

                         b) 15350

Câu 2:

a) Số hạng thừ 50 của tổng là: 

(50 - 1) * 5 + 7 =252

b) Tổng 50 số hạng đầu là:

(252 + 7) * 50 : 2 =6475

                   Đ/S: a) 252

                          b) 6475

10 tháng 9 2017

s=5+8+11+14+..

nhận xét :5+3=8

               8+3=11

                11+3=14

...............

vậy => dãy số trên là dãy số cách đều 3 đv

giả sử coi số hạng đứng thứ 100 của dãy là số hạng cuối cùng của dãy và là x.ta có:

(x-5):3+1=100

(x-5):3=100-1

(x-5):3=99

x-5=99x3

x-5=297

x=297+5

x=302

vậy số hạng đứng thứ 100 của dãy là: 302

b) ta có dãy :5+8+11+14+..

(302+5) x100:2=15350

cậu giải tương tự như trên nhá

công thức tính số hạng thứ n là:(số cuối -số đầu):khoảng cách +1

---------------------------------tính tổng:(sc+sđ)x số số hạng :2

AH
Akai Haruma
Giáo viên
24 tháng 8 2020

Lời giải:

a) Số hạng thứ $n$: \(\frac{1}{n(2n-1)(2n+1)}\)

b) Tổng $A$ có 2011 số hạng có dạng là:

\(A=\frac{1}{1.1.3}+\frac{1}{2.3.5}+....+\frac{1}{2011.4021.4023}\)

\(A=\frac{2}{2.1.3}+\frac{2}{4.3.5}+\frac{2}{6.5.7}+....+\frac{2}{4022.4021.4023}\)

\(=\frac{2}{1.2.3}+\frac{2}{3.4.5}+\frac{2}{5.6.7}+...+\frac{2}{4021.4022.4023}\)

\(< \frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2011.2012.2013}\)

$A< \frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{2013-2011}{2011.2012.2013}$

$A< \frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-....-\frac{1}{2012.2013}$

$A< \frac{1}{2}-\frac{1}{2012.2013}< \frac{1}{2}< \frac{2}{3}$

Câu 1 : Thực hiện phép tính 1 cách hợp lý : a) \(\dfrac{-12}{7}.\dfrac{4}{35}+\dfrac{12}{7}.\dfrac{\left(-31\right)}{35}-\dfrac{2}{7}\) b) \(1+2-3-4+5+5-7-8+...+97+98-99-100\) c) \(A=157.\left(-37\right)-\left(41.53-37.157\right)+51.53\) d) \(B=\left(\dfrac{1}{11}+\dfrac{1}{21}+\dfrac{1}{31}+\dfrac{1}{41}+\dfrac{1}{51}\right)\left(\dfrac{-41}{123}+\dfrac{31}{-186}-\dfrac{-51}{102}\right)\) Câu 2 : a) 12 ( x - 5 ) = 7x - 5 b) Tìm x \(\in\) Z sao cho : ( 2x - 3 ) 2010 = ( 2x...
Đọc tiếp

Câu 1 : Thực hiện phép tính 1 cách hợp lý :

a) \(\dfrac{-12}{7}.\dfrac{4}{35}+\dfrac{12}{7}.\dfrac{\left(-31\right)}{35}-\dfrac{2}{7}\)

b) \(1+2-3-4+5+5-7-8+...+97+98-99-100\)

c) \(A=157.\left(-37\right)-\left(41.53-37.157\right)+51.53\)

d) \(B=\left(\dfrac{1}{11}+\dfrac{1}{21}+\dfrac{1}{31}+\dfrac{1}{41}+\dfrac{1}{51}\right)\left(\dfrac{-41}{123}+\dfrac{31}{-186}-\dfrac{-51}{102}\right)\)

Câu 2 :

a) 12 ( x - 5 ) = 7x - 5

b) Tìm x \(\in\) Z sao cho : ( 2x - 3 ) 2010 = ( 2x - 3 ) 2012

Câu 3 :

1) Cho biểu thức S = 1 + 3 + 32 + 33 +...+ 3202 + 3 203

a) chứng tỏ rằng tổng S chia hết cho 52 .

b) Tìm Chữ số tận cùng trong tổng S .

2 ) Cho biểu thức A= \(\dfrac{2n+1}{2n+5}\) . Chứng tỏ rằng với mọi số tự nhiên n thì A là phân số tối giản .

Câu 4 : So sánh tổng gồm 1006 số hạng :

\(S=\dfrac{1}{1.1.3}+\dfrac{1}{2.3.5}+\dfrac{1}{3.5.7}+...+\dfrac{1}{1006.2011.2013}\) với \(\dfrac{2}{3}\)

1
10 tháng 12 2022

Câu 2:

a: \(\Leftrightarrow12x-60=7x-5\)

=>5x=55

=>x=11

b: \(\Leftrightarrow\left(2x-3\right)^{2010}\left[\left(2x-3\right)^2-1\right]=0\)

=>(2x-3)(2x-2)(2x-4)=0

hay \(x\in\left\{\dfrac{3}{2};1;2\right\}\)

3 tháng 9 2015

Ta thấy: 1=(1-1).4+1

              5=(2-1).4+1

              9=(3-1).4+1

              13=(4-1).4+1

              17=(5-1).4+1

              ………………

Quy luật: Mỗi số hạng trong dãy bằng số thứ tự của nó trừ 1 rồi nhân với 4 cuối cùng cộng thêm 1.

a) Gọi số n là số hạng thứ a của dãy.

Ta có: n=(a-1).4+1

=>3 số hạng tiếp theo của dãy là:(6-1).4+1=21

                                                     (7-1).4+1=25

                                                     (8-1).4+1=29

b)Số hạng thứ 2011 của dãy là: (2011-1).4+1=8041

c)Ta có:S=1+5+9+…+8041
=>\(S=\frac{\left(\left(8041-1\right):4+1\right).\left(8041+1\right)}{2}\)

=>\(S=\frac{\left(8040:4+1\right).8042}{2}\)

=>\(S=\left(2010+1\right).\frac{8042}{2}\)

=>\(S=2011.4021\)

=>\(S=8086231\)

3 tháng 9 2015

a) dạng tổng quát là: 4k + 1

3 số điền vào la 21;25;29

Số thứ 2011 : 4 x 2011 - 4 + 1 = 8041