Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2c.
\(E=1+5^2+5^4+5^6+...+5^{100}\)
\(=\frac{5^2\cdot\left(1+5^2+5^4+5^6+...+5^{100}\right)-\left(1+5^2+5^4+5^6+...+5^{100}\right)}{24}\)
\(=\frac{\left(5^2+5^4+5^6+5^8+...+5^{102}\right)-\left(1+5^2+5^4+5^6+...+5^{100}\right)}{24}\)
\(=\frac{5^{102}-1}{24}\)
Bài 1 :
a) Các số lẻ hơn kém nhau hai đơn vị
Số hạng đầu tiên là: 369-(134-1).2=103
b) Tổng S là : (369+103) : 2 .134=31624
Câu 1:
a) Số hạng thứ 100 của tổng là:
(100-1) * 3 + 5 = 302
b) Tổng 100 số hạng đầu tiên là:
(302 + 5) * 100 : 2 = 15350
Đ/S: a) 302
b) 15350
Câu 2:
a) Số hạng thừ 50 của tổng là:
(50 - 1) * 5 + 7 =252
b) Tổng 50 số hạng đầu là:
(252 + 7) * 50 : 2 =6475
Đ/S: a) 252
b) 6475
s=5+8+11+14+..
nhận xét :5+3=8
8+3=11
11+3=14
...............
vậy => dãy số trên là dãy số cách đều 3 đv
giả sử coi số hạng đứng thứ 100 của dãy là số hạng cuối cùng của dãy và là x.ta có:
(x-5):3+1=100
(x-5):3=100-1
(x-5):3=99
x-5=99x3
x-5=297
x=297+5
x=302
vậy số hạng đứng thứ 100 của dãy là: 302
b) ta có dãy :5+8+11+14+..
(302+5) x100:2=15350
cậu giải tương tự như trên nhá
công thức tính số hạng thứ n là:(số cuối -số đầu):khoảng cách +1
---------------------------------tính tổng:(sc+sđ)x số số hạng :2
Lời giải:
a) Số hạng thứ $n$: \(\frac{1}{n(2n-1)(2n+1)}\)
b) Tổng $A$ có 2011 số hạng có dạng là:
\(A=\frac{1}{1.1.3}+\frac{1}{2.3.5}+....+\frac{1}{2011.4021.4023}\)
\(A=\frac{2}{2.1.3}+\frac{2}{4.3.5}+\frac{2}{6.5.7}+....+\frac{2}{4022.4021.4023}\)
\(=\frac{2}{1.2.3}+\frac{2}{3.4.5}+\frac{2}{5.6.7}+...+\frac{2}{4021.4022.4023}\)
\(< \frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2011.2012.2013}\)
$A< \frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{2013-2011}{2011.2012.2013}$
$A< \frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-....-\frac{1}{2012.2013}$
$A< \frac{1}{2}-\frac{1}{2012.2013}< \frac{1}{2}< \frac{2}{3}$
Câu 2:
a: \(\Leftrightarrow12x-60=7x-5\)
=>5x=55
=>x=11
b: \(\Leftrightarrow\left(2x-3\right)^{2010}\left[\left(2x-3\right)^2-1\right]=0\)
=>(2x-3)(2x-2)(2x-4)=0
hay \(x\in\left\{\dfrac{3}{2};1;2\right\}\)
Ta thấy: 1=(1-1).4+1
5=(2-1).4+1
9=(3-1).4+1
13=(4-1).4+1
17=(5-1).4+1
………………
Quy luật: Mỗi số hạng trong dãy bằng số thứ tự của nó trừ 1 rồi nhân với 4 cuối cùng cộng thêm 1.
a) Gọi số n là số hạng thứ a của dãy.
Ta có: n=(a-1).4+1
=>3 số hạng tiếp theo của dãy là:(6-1).4+1=21
(7-1).4+1=25
(8-1).4+1=29
b)Số hạng thứ 2011 của dãy là: (2011-1).4+1=8041
c)Ta có:S=1+5+9+…+8041
=>\(S=\frac{\left(\left(8041-1\right):4+1\right).\left(8041+1\right)}{2}\)
=>\(S=\frac{\left(8040:4+1\right).8042}{2}\)
=>\(S=\left(2010+1\right).\frac{8042}{2}\)
=>\(S=2011.4021\)
=>\(S=8086231\)
a) dạng tổng quát là: 4k + 1
3 số điền vào la 21;25;29
Số thứ 2011 : 4 x 2011 - 4 + 1 = 8041
a) Ta thấy các số có số thứ tự lẻ đứng trước luôn là dấu cộng nên số thứ 2011 đứng trước nó là dấu cộng
Hiệu 1 khoảng cách là : 6 đơn vị
Vì số số hạng luôn hơn số số khoảng cách 1 đơn vì nên hiệu giữa số thứ 1 và số thứ 2011 là :
( 2011 - 1 ) . 6 = 12060 ( đơn vị )
Suy ra tổng của 2011 số hạng đầu tiên là :
\(S=1-7+13-19+25-31+........+12061\)
\(S=\left(1-7\right)+\left(13-19\right)+\left(25-31\right)+......+\left(12049-12055\right)+12061\)
\(S=\left(-6\right)+\left(-6\right)+\left(-6\right)+.....+\left(-6\right)+12061\)
\(S=\left(-6\right).1005+12061\)
\(S=\left(-6030\right)+12061\)
\(S=6031\)
Vậy số hạng thứ 2011 là số 12061 và tổng của 2011 số hạng đầu tiên là 6031
b) Ta có :
\(5^{30}=\left(5^3\right)^{10}=125^{10}\)
Vì \(125>124\)nên \(125^{10}>124^{10}\)
Mà \(5^{30}=125^{10}\)nên \(5^{30}>124^{10}\)
Vậy \(5^{30}>124^{10}\)