Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a có:
c=a^b+b^a\ge2^2+2^2>2c=ab+ba≥22+22>2
=> c là số lẻ
=> trong a,b phải có 1 số chẵn
Xét a chẵn => a = 2
=> 2b + b2 = c
Xét b > 3 => b2 chia 3 dư 1
=> b2 chia 3 dư 1
2b chia 3 dư 2
=> 2b + b2 chia hết cho 3
=> c chia hết cho 3
=> c = 3
mà ab + ba = c > 3 ( loại c = 3)
Xét b = 3 => c = 17
Vậy (a,b,c) = (2,3,17) hoặc ( 3,2,17)
ta có: a=3b=4c=5d =>\(\frac{a}{60}=\frac{b}{20}=\frac{c}{15}=\frac{d}{12}\)
\(\Rightarrow\frac{ab}{1200}=\frac{c^2}{225}=\frac{d^2}{144}=\frac{ab-c^2-d^2}{1200-225-144}=\frac{831}{831}=1\)
\(\Rightarrow c^2=225\Rightarrow\orbr{\begin{cases}c=15\\c=-15\end{cases}}\)
-Nếu c=15 thay vào hệ ban đầu ta có:
\(\frac{b}{20}=\frac{c}{15}=\frac{15}{15}=1\Rightarrow b=20\Rightarrow b-c=5\)
-Nếu c=-15 => b= -20 => b-c= -5
Từ a= 3b =4c = 5d =>c =3/4b (1) ; d=3/5b
Thay a= 3b ; c =3/4b ; d= 3/5b vào ab-c^2-d^2=831
=>3b^2 - 9/16b^2 - 9/25b^2 = 831
=>831/400b^2 = 831
=>b^2=400
=>b=20 hoặc b=-20
Thay 2 giá trị của b vào (1)
=>c=15 hoặc c=-15
=>b-c=5 hoặc -5
\(a=3d=4c=5d\Rightarrow\frac{a}{60}=\frac{b}{20}=\frac{c}{15}=\frac{d}{12}\Leftrightarrow\frac{ab}{1200}=\frac{c^2}{255}=\frac{d^2}{144}=\frac{ab-c^2-d^2}{1200-255-144}\Leftrightarrow\frac{d^2}{144}=\frac{831}{831}\Leftrightarrow d=12\Rightarrow b=20;c=15\Rightarrow\)
a, Xét tam giác DAE và tam giác BAC có
DAE = BAC ( đối đỉnh )
AD = AB ( gt)
AE= AC ( gt)
=> tam giác DAE = tam giác BAC
=> BC= DE
b, ta có DAE = BAC = 90 độ ( 2 góc đối đỉnh )
lại có BAD = CAE đối đỉnh
=> BAD=CAE = 360 - (BaC + DAE) tất cả trên 2
<=> BAD= 360 -180 tâts cả trên 2
<=> BAD = 180 trên 2
<=> BAD = 90 độ
=> tam giác BAD vuông lại A
mà AB =AD (gt)
=> BAD vuông cân
=> DBA = BDA = 90 trên 2 = 45 độ
Chứng mình tương tự tam giác CAE vuông cân
=>AEC=ACE= 90 trên 2 = 45 độ
=> DBA=AEC=45 độ
mà chúng ở vị trí sole trong
=> BD // CE
nhật minh ơi
tui làm được