\(\frac{a^2\cdot b}{c}\). Hỏi P là số âm hay số dương hay bằng 0?

b,tìm các...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2018

a,  ta có : P = \(a^2.\frac{b}{c}\)

ta lại có : \(a^2\ge\)0

TH1 : nếu b và c  cùng dấu  thì P \(\ge0\)

TH2 : nếu b và c khác dấu thì P \(\le\)0

b, Ta có : \(a.\left(a+b+c\right)+b.\left(a+b+c\right)+c.\left(a+b+c\right)=-12+18+30=36\)

\(\Leftrightarrow\)\(\left(a+b+c\right).\left(a+b+c\right)=36\)

\(\Leftrightarrow\left(a+b+c\right)^2=36\Leftrightarrow a+b+c=6\)

\(\Rightarrow\)a = -12 : 6 = -2

         b =  18 : 6 = 3

         c = 30 : 6 = 5

18 tháng 2 2018

a, P có thể là số âm, số dương hay cũng có thể bằng 0 bạn nk.

Vì đề ko cho đk của a,b,c

b, Bạn viết rõ đề ra c(a+b+c)=? đi 

7 tháng 9 2016

dài lắm 

có gì hoi sau

7 tháng 9 2016

nek sao bn kì z? giúp ng ta thì giúp cho đàng hoàng nhá. bn ns dài lắm lak xog ak???

Bài 1: Các câu sau, câu nào đúng,câu nào sai?

a) Mọi số hữu tỉ dương đều lớn hơn 0      Đ

b) Nếu a là số hữu tỉ âm thì a là số tự nhiên       S

c) Nếu a là số tự nhiên thì a là số hữu tỉ âm            S

d) 0 là số hữu tỉ dương                             S

 a/b < c/d => ad < cb
=> ad + ab < bc + ab
=> a ( d+b) < b ( a +c)
=> a/b < a+ c/d +b (1)
* a/b < c/d => ad < cb
=> ad + cd < cb + cd
=> d ( a +c) < c ( b+d)
=> c/d > a + c/b + d (2)
Từ (1) và (2) => a/b < a+c/b + d < c/d

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344c, Tìm 3 số x,y,z...
Đọc tiếp

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  

2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0

b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344

c, Tìm 3 số x,y,z biết \(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{x+4}\) và x+y+z=17

3.a, Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) .CMR: c=0 hoặc b=0

b,Cho x,y là các số nguyên tố dương sao cho A=\(\frac{x^4+y^4}{15}\) cũng là số nguyên dương . CMR ; x,y đều chia hết cho 3 và 5. Từ đó tìm ra giá trị nhỏ nhất của A

c, cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) . hãy tìm giá trị biểu thức : P=\(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

2
19 tháng 12 2019

1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)

Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu a + b + c + d = 0

=> a + b = -(c + d)

=> b + c = (-a + d) 

=> c + d = -(a + b)

=> d + a = (-b + c)

Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4

Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)

Khi đó M = 1 + 1 + 1 + 1 = 4

2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)

Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)

b) 72x + 72x + 3 = 344

=> 72x + 72x.73 = 344

=> 72x.(1 + 73) = 344

=> 72x  = 1

=> 72x = 70

=> 2x = 0 => x = 0

c) Ta có :

 \(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)

=>  2x + 2 = 14 => x = 6 ; 

2y - 4 = 6 => y = 5 ; 

6 + 5 + z = 17 => z = 6 

Vậy x = 6 ; y = 5 ; z = 6

3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau) 

=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;  

Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0 

Vậy c = 0 hoặc b = 0

c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau) 

=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)

Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)

Vậy P = 8

9 tháng 1 2020

2. b) \(7^{2x}+7^{2x+3}=344\)

        \(7^{2x}\cdot\left(1+7^3\right)=344\)

        \(7^{2x}\cdot\left(1+343\right)=344\)

        \(7^{2x}\cdot344=344\)

               \(7^{2x}=1\)  

               \(7^{2x}=7^0\)

              \(2x=0\)

               \(x=0\)

29 tháng 7 2018

a, \(\frac{a}{b}=\frac{ad}{bd};\frac{c}{d}=\frac{bc}{bd}\)

Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\)

b, Theo câu a ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\Rightarrow ad+ab< bc+ab\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)

Lại có: \(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)

Từ (1) và (2) => đpcm

31 tháng 8 2018

a, \(\frac{a}{b}=\frac{ad}{bd};\frac{c}{d}=\frac{bc}{bd}\)

Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\)

b, Theo câu a, ta có:

\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\Rightarrow ad+ab< bc+ab\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)(1)

Lại có: \(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)(2)

Từ (1) và (2) => đpcm.

9 tháng 6 2019

a, Theo đề bài ta có : \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)                                                     \((1)\)

Thêm ab vào hai vế của 1  :          \(ad+ab< bc+ab\)

                                                  \(a(b+d)< b(a+c)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)        \((2)\)

Thêm cd vào hai vế của 1 :           \(ad+cd< bc+cd\)

                                                  \(d(a+c)< c(b+d)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)           \((3)\)

Từ 2 và 3 suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

b, Theo câu a ta lần lượt có :

\(\frac{-1}{3}< \frac{-1}{4}\Rightarrow\frac{-1}{3}< \frac{-2}{7}< \frac{-1}{4}\)

\(\frac{-1}{3}< \frac{-2}{7}\Rightarrow\frac{-1}{3}< \frac{3}{10}< \frac{-2}{7}\)

\(\frac{-1}{3}< \frac{-3}{10}\Rightarrow\frac{-1}{3}< \frac{-4}{13}< \frac{-3}{10}\)

Vậy : \(\frac{-1}{3}< \frac{-4}{13}< \frac{-3}{10}< \frac{-2}{7}< \frac{-1}{4}\)

15 tháng 8 2015

a.  ta có a\b < c\d nên

    ad < bc

    ad+ab < bc+ba                 

    a( d+b) < b( c+a)

    a\b < a+c\b+d    (1)

    ad<bc

   ad +cd < bc+cd

   d (a+c) < c(b+d)

   a+c\b+d< c\d     (2)

   Từ 1 và 2 suy ra     a\b < a+c\b+d < c\d

b. ta có -1\3 < -1\4

    nên  -1\3 < -2\7 < -3\11 < -4\15 < -1\4

c. Số hữu tỉ âm nhỏ hơn số tự nhiên là đúng

28 tháng 1 2018

1,

Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)

\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)

\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)

Dấu "=" xảy ra khi x = 0, y = 13

Vậy Pmin = 6/7 khi x = 0, y = 13

2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)

Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6

28 tháng 1 2018

3,

Ta có: \(10\le n\le99\)

\(\Rightarrow20\le2n\le198\)

\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)

\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)

\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)

Ta thấy chỉ có 36 là số chính phương 

Vậy n = 32

4,

ÁP dụng TCDTSBN ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)

\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)

\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)

Vậy B = 8 

14 tháng 8 2016

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+a-a+b-b+b-c+c+c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)                                                                                                                  (Tính chất dãy các tỉ số bằng nhau)                                                                  Do đó:
\(\frac{a+b-c}{c}=1\Rightarrow\frac{a+b}{c}-1=1\Rightarrow\frac{a+b}{c}=2\)
\(\frac{a-b+c}{b}=1\Rightarrow\frac{a+c}{b}-1=1\Rightarrow\frac{a+c}{b}=2\)
\(\frac{-a+b+c}{a}=1\Rightarrow\frac{b+c}{a}-1=1\Rightarrow\frac{b+c}{a}=2\)
\(\Rightarrow M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{a+b}{c}.\frac{b+c}{a}.\frac{a+c}{b}=2.2.2=8\)

24 tháng 11 2016

Áp dụng tính chất dãy tủ số bằng nhau, ta có:

\(\frac{a+b-c}{c}\) = \(\frac{a-b+c}{b}\) = \(\frac{-a+b+c}{a}\) = \(\frac{a+b+c}{a+b+c}\) = 1

=>\(\frac{a+b-c}{c}\) = 1

a+b-c = c

a+b =2c

=>\(\frac{a-b+c}{b}\) = 1

a-b+c = c

a+c =2b

=>\(\frac{-a+b+c}{a}\) = 1

-a+b+c = a

b+c =2a

Thay a+b =2c , a+c =2b , b+c =2a vào biểu thức:

M=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\) = \(\frac{2c.2b.2a}{abc}\) = \(\frac{2^3abc}{abc}\) = 23 =8

 

 

24 tháng 11 2016

thật là logic

16 tháng 7 2019

2. Ta có:

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(\left(3^n.9+3^n\right)-\left(2^{n-1}.8+2^{n-1}.2\right)\)

\(3^n\left(9+1\right)-2^{n-1}\left(8+2\right)\)

\(3^n.10-2^{n-1}.10\)

\(\left(3^n-2^{n-1}\right).10⋮10\forall n\)

Vậy \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)