K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2021

undefined

AH
Akai Haruma
Giáo viên
14 tháng 11 2023

Đề sai. Bạn xem lại.

19 tháng 8 2019

2.

Áp dụng bất đẳng thức Bunhiacopxki :

\(\left(1+9^2\right)\left(x^2+\frac{1}{x^2}\right)\ge\left(x+\frac{9}{x}\right)^2\)

\(\Leftrightarrow82\cdot\left(x^2+\frac{1}{x^2}\right)\ge\left(x+\frac{9}{x}\right)^2\)

\(\Leftrightarrow\sqrt{82}\cdot\sqrt{x^2+\frac{1}{x^2}}\ge x+\frac{9}{x}\)

Tương tự ta cũng có :

\(\sqrt{82}\cdot\sqrt{y^2+\frac{1}{y^2}}\ge y+\frac{9}{y}\)

\(\sqrt{82}\cdot\sqrt{z^2+\frac{1}{z^2}}\ge z+\frac{9}{z}\)

Cộng theo vế của các bất đẳng thức ta được :

\(\sqrt{82}\cdot\left(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\right)\ge x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\)

\(\Leftrightarrow\sqrt{82}\cdot P\ge x+\frac{9}{x}+y+\frac{9}{y}+z+\frac{9}{z}\)(1)

Mặt khác áp dụng bất đẳng thức Cauchy ta có :

\(x+\frac{9}{x}+y+\frac{9}{y}+z+\frac{9}{z}=81x+\frac{9}{x}+81y+\frac{9}{y}+81z+\frac{9}{z}-80x-80y-80z\)

\(\ge2\sqrt{\frac{81x\cdot9}{x}}+2\sqrt{\frac{81y\cdot9}{y}}+2\sqrt{\frac{81z\cdot9}{z}}-80\left(x+y+z\right)\)

\(\ge2\sqrt{729}+2\sqrt{729}+2\sqrt{729}-80\cdot1\)

\(=82\) (2)

Từ (1) và (2) suy ra \(\sqrt{82}\cdot P\ge82\)

\(\Leftrightarrow P\ge\sqrt{82}\) ( đpcm )

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{3}\)

19 tháng 8 2019

1.

Áp dụng bất đẳng thức Cauchy :

\(\frac{a^2+1}{a}+\frac{b^2+1}{b}+\frac{c^2+1}{c}\)

\(=a+\frac{1}{a}+b+\frac{1}{b}+c+\frac{1}{c}\)

\(=9a+\frac{1}{a}+9b+\frac{1}{b}+9c+\frac{1}{c}-8a-8b-8c\)

\(\ge2\sqrt{\frac{9a}{a}}+2\sqrt{\frac{9b}{b}}+2\sqrt{\frac{9c}{c}}-8\left(a+b+c\right)\)

\(\ge3\cdot2\sqrt{9}-8=10\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
27 tháng 5 2019

Mình nghĩ CM bằng BĐT Bunhiacopxky đã là chi tiết rồi nhưng nếu bạn muốn chi tiết hơn nữa thì thế này:

Xét hiệu:\(\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)(x+y+z)-(a+b+c)^2\)

\(=a^2+a^2.\frac{y}{x}+a^2.\frac{z}{x}+b^2+b^2.\frac{x}{y}+b^2.\frac{z}{y}+c^2+c^2.\frac{x}{z}+c^2.\frac{y}{z}-(a^2+b^2+c^2-2ab-2bc-2ac)\)

\(=(a^2.\frac{y}{x}+b^2.\frac{x}{y}-2ab)+(a^2.\frac{z}{x}+c^2.\frac{x}{z}-2ac)+(b^2.\frac{z}{y}+c^2.\frac{y}{z}-2bc)\)

\(=(a\sqrt{\frac{y}{x}}-b\sqrt{\frac{x}{y}})^2+(a\sqrt{\frac{z}{x}}-c\sqrt{\frac{x}{z}})^2+(b\sqrt{\frac{z}{y}}-c\sqrt{\frac{y}{z}})^2\geq 0\) với mọi $a,b,c,x,y,z>0$

Do đó:\(\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)(x+y+z)\geq (a+b+c)^2\)

\(\Rightarrow \frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\geq \frac{(a+b+c)^2}{x+y+z}\) (đpcm)


AH
Akai Haruma
Giáo viên
27 tháng 5 2019

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)(x+y+z)\geq (a+b+c)^2\)

\(\Rightarrow \frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\geq \frac{(a+b+c)^2}{x+z+y}\) (đpcm)

Dấu "=" xảy ra khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

13 tháng 2 2020

1) \(\left\{{}\begin{matrix}b+c-a=x\\c+a-b=y\\a+b-c=z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\frac{y+z}{2}\\b=\frac{z+x}{2}\\c=\frac{x+y}{2}\end{matrix}\right.\)

BĐT cần cm trở thành:

\(\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\ge3\)

Theo AM-GM, VT>=6/2=3

Dấu bằng xảy ra khi a=b=c

2)\(x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x^2\sqrt{\frac{1}{x}}=2x\sqrt{x}\)

=>\(P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(\left\{{}\begin{matrix}x\sqrt{x}=a\\y\sqrt{y}=b\\z\sqrt{z}=c\end{matrix}\right.\Rightarrow abc=1\)

=>\(P\ge\frac{2a}{b+2c}+\frac{2b}{c+2a}+\frac{2c}{a+2b}\ge2.1=2\)

(Dùng Cauchy-Schwartz chứng minh được:

\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge1\))

Dấu bằng xảy ra khi a=b=c=1 <=> x=y=z=1

Vậy minP=2<=>x=y=z=1