\(a+b=cd\) và \(c+d=ab\)

tìm a, b, c, d

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2018

không cho biết số của ẩn ko tìm đc nhé

29 tháng 10 2018

a,b,c,d \(\in N\)

4 tháng 8 2017

cái thứ nhất nhân với a cái thứ hai nhan b, cái thứ ba nhân c, cái thứ tư nhân d rồi dùng svác sơ trả lời câu hỏi của tớ đi

12 tháng 9 2020

hướng làm của bạn vũ tiền châu đúng rồi nhé 

Bất đẳng thức cần chứng minh tương đương với : \(\frac{a^4}{a\left(b+c+d\right)}+\frac{b^4}{b\left(a+c+d\right)}+\frac{c^4}{c\left(d+a+b\right)}+\frac{d^4}{d\left(a+b+c\right)}\ge\frac{1}{3}\)

\(< =>\frac{a^4}{ab+ac+ad}+\frac{b^4}{ba+bc+bd}+\frac{c^4}{ca+cb+cd}+\frac{d^4}{da+db+dc}\ge\frac{1}{3}\)

Sử dụng bất đẳng thức Bunhiacopxki dạng phân thức ta có :

\(\frac{a^4}{ab+ac+ad}+\frac{b^4}{ba+bc+bd}+\frac{c^4}{ca+cb+cd}+\frac{d^4}{da+db+dc}\ge\frac{\left(a^2+b^2+c^2+d^2\right)^2}{3.\left(ab+bc+ca+da\right)}\)

\(=\frac{\left(a^2+b^2+c^2+d^2\right)^2}{3.1}=\frac{\left(a^2+b^2+c^2+d^2\right)^2}{3}\)

Giờ ta cần chỉ ra được \(\frac{\left(a^2+b^2+c^2+d^2\right)^2}{3}\ge\frac{1}{3}< =>\left(a^2+b^2+d^2+c^2\right)^2\ge1\) 

\(< =>a^2+b^2+c^2+d^2\ge1< =>a^2+b^2+c^2+d^2\ge ab+bc+cd+da\)

\(< =>2\left(a^2+b^2+c^2+d^2\right)\ge2\left(ab+bc+cd+da\right)\)

\(< =>2a^2+2b^2+2c^2+2d^2-2ab-2bc-2cd-2da\ge0\)

\(< =>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-d\right)^2+\left(d-a\right)^2\ge0\)*đúng*

Khi đó : \(\frac{a^4}{ab+ac+ad}+\frac{b^4}{ba+bc+bd}+\frac{c^4}{ca+cb+cd}+\frac{d^4}{da+db+dc}\ge\frac{\left(a^2+b^2+c^2+d^2\right)^2}{3}\ge\frac{1}{3}\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=d=\frac{1}{2}\)

Vậy ta có điều phải chứng minh

21 tháng 7 2018

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)
\(\Leftrightarrow\left(a^2+b^2\right)cd=ab\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2cd-b^2cd=abc^2+abd^2\)
\(\Leftrightarrow a^2cd-abc^2-abd^2+b^2cd=0\)
\(\Leftrightarrow ac\left(ad-bc\right)-bd\left(ad-bc\right)=0\)
\(\Leftrightarrow\left(ac-bd\right)\left(ad-bc\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}ac-bd=0\\ad-bc=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}ac=bd\\ad=bc\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{a}{b}=\dfrac{d}{c}\\\dfrac{a}{b}=\dfrac{c}{d}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}\dfrac{a}{b}=\dfrac{d}{c}\\\dfrac{a}{b}=\dfrac{c}{d}\end{matrix}\right.\) (ĐPCM)

29 tháng 10 2017

ta có: \(a+b+c+d=0\)

\(\Leftrightarrow a\left(a+b+c+d\right)=0\)

\(\Leftrightarrow a^2+ab+ac+ad=0\)

\(\Leftrightarrow ad=-\left(a^2+ab+ac\right)\)

\(\Leftrightarrow ad-bc=-\left(a^2+ab+ac+bc\right)\)

\(\Leftrightarrow ad-bc=-\left(a+c\right)\left(a+b\right)\)

c/m tương tự ta đc: \(ab-cd=-\left(a+c\right)\left(a+d\right)\)

                                \(ac-bd=-\left(a+b\right)\left(a+d\right)\)

\(\Rightarrow\left(ad-bc\right)\left(ab-cd\right)\left(ac-bd\right)=-\left(a+c\right)^2\left(a+b\right)^2\left(a+d\right)^2\)

                                                                            \(=\left[-\left(a+b\right)\left(a+c\right)\left(a+d\right)\right]^2\)

mà a;b;c;d là các số hữu tỉ nên:

\(-\left(a+b\right)\left(a+c\right)\left(a+d\right)\)là số hữu tỉ 

=> \(\left(ad-bc\right)\left(ab-cd\right)\left(ac-bd\right)\) là bình phương của 1 số hữu tỉ =>đpcm

18 tháng 3 2017

Giả sử ƯCLN(a,c)=p(p\(\ge1\))

\(\Rightarrow a=p\times a1,c=p\times c1\)(a1,b1 là các số dương và (a1,c1)=1)

Từ đẳng thức ab=cd suy ra a1b=c1d do(a1,c1)=1 nên b\(⋮c1,d⋮a1\), ta có :

b=c1q và d=a1q(q\(\in Z^+\))

Từ đó suy ra : \(a^n+b^n+c^n+d^n=\left(a1^n+c1^n\right)\left(p^n+q^n\right)\)

do p\(\ge1,q\ge1\) nên p^n+q^n >=2 và a1,c1 là các số dương nên a^n+b^n+c^n+d^n là hợp số

18 tháng 3 2017

Chưa hiểu lắm

chứng minh bổ đề:

\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

ta có:

ad<bc

=>ab+ad<ab+bc

=>a(b+d)<b(a+c)

\(\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)

ad<bc

=>ad+cd<bc+cd

=>d(a+c)<c(b+d)

\(\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

ta có:

\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{ab}{b^2}< \frac{cd}{d^2}\Leftrightarrow\frac{ab}{b^2}< \frac{ab+cd}{b^2+d^2}< \frac{cd}{d^2}\Leftrightarrow\frac{a}{b}< \frac{ab+cd}{b^2+d^2}< \frac{c}{d}\)

=>đpcm

mà bn lấy mấy bài bất đẳng thức ở đâu thế

24 tháng 11 2018

đây là toán lớp 9 sao lại có trong chuyên đề bồi dưỡng lớp 7 luôn vậy?????

5 tháng 12 2015

a)a+b=c+d => a=c+d-b 
thay vào ab+1=cd 
=> (c+d-b)*b+1=cd 
<=> cb+db-cd+1-b^2=0 
<=> b(c-b)-d(c-b)+1=0 
<=> (b-d)(c-b)=-1 
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên 
mà (b-d)(c-b)=-1 nên có 2 TH: 
TH1: b-d=-1 và c-b=1 
<=> d=b+1 và c=b+1 
=> c=d 
TH2: b-d=1 và c-b=-1 
<=> d=b-1 và c=b-1 
=> c=d 
Vậy từ 2 TH ta có c=d.