Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
khai triển và rút gọn ta được:
\(4a^3+4b^3+4c^3+24abc\ge\left(a+b+c\right)^3.\)<=> \(a^3+b^3+c^3+8abc\ge\left(a+b\right)\left(b+c\right)\left(c+a\right)\)<=> a(a-b)(a-c) + b(b-a)(b-c) +c(c-a)(c-b) +3abc\(\ge0\)
giả sử \(a\ge b\ge c\)
c(c-a)(c-b)\(\ge0\)
a(a-b)(a-c) + b(b-a)(b-c) = (a-b)(a2 - b2 + bc-ac) = (a-b)2(a+b-c) \(\ge0\)
3abc\(\ge0\)
cộng vế theo vế ta được bdt cần chứng minh
dâu '=' khi \(\hept{\begin{cases}c\left(c-a\right)\left(c-b\right)=0\\\left(a-b\right)^2\left(a+b-c\right)=0\\3abc=0\end{cases}}\)=> a=b; c=0
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=6abc\)
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=6abc\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=3abc\)
Đến đây ta chỉ cần chứng minh \(a^2+b^2+c^2-ab-bc-ca=a^3+b^3+c^3\)
Nhưng rõ ràng: \(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\ne a^2+b^2+c^2-ab-bc-ca\)
KL : Đề sai.
a+b+c+ab+bc+ca=6abc \(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=6\)
Đặt \(A=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)
Ta có: \(\left(\dfrac{1}{a}-\dfrac{1}{b}\right)^2\ge0\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}\ge\dfrac{2}{ab}\)
CMTT: \(\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{2}{bc};\dfrac{1}{c^2}+\dfrac{1}{a^2}\ge\dfrac{2}{ca}\)
Ta có: \(\left(\dfrac{1}{a}-1\right)^2\ge0\Leftrightarrow\dfrac{1}{a^2}+1\ge\dfrac{2}{a}\)
CMTT: \(\dfrac{1}{b^2}+1\ge\dfrac{2}{b};\dfrac{1}{c^2}+1\ge\dfrac{2}{c}\)
\(3A+3\ge2.\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=2.6=12\)
<=> A + 1 \(\ge4\Leftrightarrow A\ge3\) (đpcm)
con súc vật đừng có tag tao vào tao đéo thích giúp loại như mày
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\)
\(a+b+c+ab+ac+bc=6abc\) \(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)
Hay \(x+y+z+xy+yz+xz=6\)
Cần chứng minh \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=x^2+y^2+z^2\ge3\)
Ta có : \(\left(x^2+1\right)+\left(y^2+1\right)+\left(z^2+1\right)\ge2\left(x+y+z\right)\) (BĐT Cosi)
\(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\) (BĐT Cosi)
\(\Rightarrow3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+xz\right)=12\)
\(\Rightarrow x^2+y^2+z^2\ge3\) (đpcm)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
a+b+c+ab+bc+ac = 6abc \(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)
Đặt \(A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)
Cmtt : \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc};\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ca}\)
Ta có : \(\left(\frac{1}{a}-1\right)^2\ge0\Leftrightarrow\frac{1}{a^2}+1\ge\frac{2}{a}\)
Cmtt : \(\frac{1}{b^2}+1\ge\frac{2}{b};\frac{1}{c^2}+1\ge\frac{2}{c}\)
\(3A+3\ge2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=2.6=12\)
\(\Leftrightarrow A+1\ge4\Leftrightarrow A\ge3\left(đpcm\right)\)
Chúc bạn học tốt !!!