\(a,b,c>=0\)

\(a+b+c=1\)

Chứng minh

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2019

a,b,c\(\inℕ\) và a+b+c=1 ; a,b,c\(\ge\)0

Ta có 3 TH:

TH1: a=1,b=0,c=0                                                                             TH2:c=1,b=0,a=0

=> b+c=0+0=16.(1.0.0)=0                                                            => b+c=b+1>16.(0.0.1)=0

TH2: b=1,a=0,c=0

=> b+c=1+c> 16.(0.1.0)=0

14 tháng 9 2019

Ta có: \(\left(b-c\right)^2\ge0\Leftrightarrow b^2-2bc+c^2\ge0\)

\(\Leftrightarrow\left(b+c\right)^2\ge4bc\)

Áp dụng BĐT Cô - si cho 2 số không âm, ta được:

\(\left(a+b+c\right)^2\ge4a\left(b+c\right)\)

hay \(1\ge4a\left(b+c\right)\)

\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\)

Mà \(\left(b+c\right)^2\ge4bc\)nên 

\(b+c\ge4a.4bc=16abc\left(đpcm\right)\)

15 tháng 9 2019

Cảm ơn bạn rất nhiều ;))

20 tháng 3 2017

Bài 1:

Áp dụng BĐt cauchy dạng phân thức:

\(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\ge\dfrac{4}{3\left(x+y\right)}\)

\(\Rightarrow\left(3x+3y\right)\left(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\right)\ge\left(3x+3y\right).\dfrac{4}{3x+3y}=4\)

dấu = xảy ra khi 2x+y=x+2y <=> x=y

20 tháng 3 2017

Bài 2:

ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{4^2}{a+b+c+d}=\dfrac{16}{a+b+c+d}\)(theo BĐt cauchy-schwarz)

\(\Rightarrow\dfrac{1}{a+b+c+d}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)\)

Áp dụng BĐT trên vào bài toán ta có:

\(A=\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{c}\right)\)\(A\le\dfrac{1}{16}.4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

......

dấu = xảy ra khi a=b=c

Bài 2:

Áp dụng BĐT cauchy cho 2 số dương:

\(a^2+1\ge2a\)

\(\Leftrightarrow\dfrac{a}{a^2+1}\le\dfrac{a}{2a}=\dfrac{1}{2}\)

thiết lập tương tự:\(\dfrac{b}{b^2+1}\le\dfrac{1}{2};\dfrac{c}{c^2+1}\le\dfrac{1}{2}\)

cả 2 vế các BĐT đều dương ,cộng vế với vế,ta có dpcm

dấu = xảy ra khi a=b=c=1

29 tháng 11 2017

C1:Áp dụng Bất đẳng thức AM-GM ta có:

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1^2}{a+b}+\dfrac{1^2}{b+c}+\dfrac{1^2}{c+a}\ge\)

\(\ge\dfrac{\left(1+1+1\right)^2}{a+b+b+c+c+a}=\dfrac{9}{2\left(a+b+c\right)}\)

\(\Rightarrow A=\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=\left(a+b+c\right).\dfrac{9}{2\left(a+b+c\right)}=\dfrac{9}{2}\)Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

C2: Khai triển

\(A=\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=\)

\(=1+\dfrac{c}{a+b}+1+\dfrac{a}{b+c}+1+\dfrac{b}{c+a}\) (bn tự khai triển đầy đủ nha)

Áp dụng BĐT Nesbitt ta có:

\(A=\left(1+1+1\right)+\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)\ge\)

\(\left(1+1+1\right)+\dfrac{3}{2}=\dfrac{9}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

24 tháng 4 2018

áp dụng bất đẳng thức cosi

\(\frac{a^2}{b^3}+\frac{1}{a}+\frac{1}{a}\ge3\sqrt[3]{\frac{a^2}{b^3}\cdot\frac{1}{a}\cdot\frac{1}{a}}=3\cdot\frac{1}{b}\)

đoạn tiếp bạn tự làm nha

28 tháng 4 2017

a)ĐK: a>0 b>0 nhé bạn đề thiếu

(a-b)2\(\ge\)0

<=>a2+b2\(\ge\)2ab

<=>a2+2ab+b2\(\ge\)4ab

<=>(a+b)2\(\ge\)4ab

<=>\(\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)

<=>\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

Dấu "=" xảy ra <=> (a-b)2=0<=>a=b

=>A\(\ge\)\(\left(a+b\right)\dfrac{4}{a+b}=4\)(đpcm)

b)\(B=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{a+c}{b}=\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\)

Áp dụng bất đẳng thức cosi x+y\(\ge\)2\(\sqrt{xy}\)cho 2 số dương x;y ta có:

\(\dfrac{a}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{ac}{ca}}=2\)

\(\dfrac{b}{c}+\dfrac{c}{b}\ge2\sqrt{\dfrac{bc}{cb}}=2\)

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ba}}=2\)

Dấu "=" xảy ra khi và chỉ khi:\(\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{c}{a}\\\dfrac{b}{c}=\dfrac{c}{b}\\\dfrac{a}{b}=\dfrac{b}{a}\end{matrix}\right.\)\(\Leftrightarrow\)a=b=c

=>B\(\ge2+2+2=6\)(đpcm)

28 tháng 4 2017

cảm ơn bạn nhìu lắm!! mình đang thật sự cần

9 tháng 11 2017

Ta có: \(\left[a+\left(b+c\right)\right]^2\ge4a\left(b+c\right)\)

\(\Leftrightarrow1\ge4a\left(b+c\right)\)(*)

Lại có: \(\left(b+c\right)^2\ge4bc\)(**)

Nhân 2 vế (*) và(**), ta có:

 \(\left(b+c\right)^2\ge16abc\left(b+c\right)\)

Mà \(b;c\ge0\Rightarrow b+c\ge0\)

\(\Rightarrow b+c\ge16abc\)

Vậy \(b+c\ge16abc\)

9 tháng 11 2017

ta co:b+c=(b+c)(a+(b+c))2 (vi a+b+c=1)

vi (a+(b+c))2>=4a(b+c)

=>b+c>=(b+c)2.4a

lai co (b+c)2>=4bc

=>b+c>=4bc.4a=16abc

25 tháng 4 2017

em học lớp 5 nên k hiểu được bài lớp 8 nhưng cứ comments,hi

25 tháng 4 2017

a)có \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=\left(a+b\right)\left(\frac{a+b}{ab}\right)\)\(=\frac{\left(a+b\right)^2}{ab}\Rightarrow\frac{\left(a+b\right)^2}{ab}-4=\frac{\left(a+b\right)^2-4ab}{ab}=\frac{\left(a-b\right)^2}{ab}\)\(\ge0\forall a;b>0\)

\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)dấu''=''xảy ra khi a=b

b)B=\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)

=\(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\)mà ta có \(\frac{x}{y}+\frac{y}{x}-2=\frac{\left(x-y\right)^2}{xy}\ge0\forall x;y>0\)

\(\Rightarrow\frac{x}{y}+\frac{y}{x}\ge2\forall x;y>0\)áp dụng bđt trên ta có B\(\ge\)2+2+2=6

dấu ''=''xảy ra khi x=y=z

13 tháng 5 2021

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge6\)

=> \(-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le-6\)

=> \(-\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le-6.\frac{3}{2}\)

=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

=> \(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\ge9\)

=> \(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge6\)(1)

Dễ thấy \(\frac{a}{b}+\frac{b}{a}\ge2\)(với a,b > 0)

=> (1) đúng 

=> BĐTđược chứng minh

14 tháng 5 2021

b)Đặt  \(A=a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(a,b,c>0\right)\).

\(A=4\left(a+b+c\right)-3\left(a+b+c\right)+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).

\(A=\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)-3\left(a+b+c\right)\).

Vì \(a>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(4a+\frac{1}{a}\ge2\sqrt{4.a.\frac{1}{a}}=4\left(1\right)\).

Dấu bằng xảy ra \(\Leftrightarrow4a=\frac{1}{a}\Leftrightarrow a=\frac{1}{2}\).

 Chứng minh tương tự, ta được:

\(4b+\frac{1}{b}\ge4\left(b>0\right)\left(2\right)\).
Dấu bằng xảy ra \(\Leftrightarrow b=\frac{1}{2}\).

Chứng minh tương tự, ta được:

\(4c+\frac{1}{c}\ge4\left(c>0\right)\left(3\right)\).
Dấu bằng xảy ra \(\Leftrightarrow c=\frac{1}{2}\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)\ge4+4+4=12\).

\(\Leftrightarrow\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)-3\left(a+b+c\right)\ge\)\(12-3\left(a+b+c\right)\).

\(\Leftrightarrow A\ge12-3\left(a+b+c\right)\left(4\right)\).

Mặt khác, ta có: \(a+b+c\le\frac{3}{2}\).

\(\Leftrightarrow3\left(a+b+c\right)\le\frac{9}{2}\).

\(\Rightarrow-3\left(a+b+c\right)\ge-\frac{9}{2}\).

\(\Leftrightarrow12-3\left(a+b+c\right)\ge\frac{15}{2}\left(5\right)\).
Dấu bằng xảy ra \(\Leftrightarrow a+b+c=\frac{3}{2}\).

Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:

\(A\ge\frac{15}{2}\).

Dấu bằng xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\).

Vậy với \(a,b,c>0\)và \(a+b+c\le\frac{3}{2}\)thì \(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{15}{2}\).

5 tháng 4 2017

a) đề thiếu òi bạn à