Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\frac{c+ab}{a+b}+\frac{b+ac}{a+c}+\frac{a+bc}{b+c}\)
\(=\frac{c\left(a+b+c\right)+ab}{a+b}+\frac{b\left(a+b+c\right)+ac}{a+c}+\frac{a\left(a+b+c\right)+bc}{b+c}\)
\(=\frac{ac+bc+c^2+ab}{a+b}+\frac{ab+b^2+cb+ac}{a+c}+\frac{a^2+ab+ac+bc}{b+c}\)
\(=\frac{\left(c+a\right)\left(c+b\right)}{a+b}+\frac{\left(b+c\right)\left(a+b\right)}{a+c}+\frac{\left(a+b\right)\left(a+c\right)}{b+c}\)
Hình như là \(\ge2\) mới đúng bạn ạ :v
Câu hỏi của TRẦN HỮU ĐẠT - Toán lớp 9 - Học toán với OnlineMath
Ta có BĐT phụ: \(a^5+b^5\ge a^2b^2\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\left(a^2+ab+b^2\right)\ge0\)*đúng*
\(\Rightarrow a^5+b^5+ab\ge a^2b^2\left(a+b\right)+ab=ab\left(ab\left(a+b\right)+1\right)\)
\(\Rightarrow\dfrac{ab}{a^5+b^5+ab}\ge\dfrac{ab}{ab\left(ab\left(a+b\right)+1\right)}=\dfrac{1}{ab\left(a+b\right)+1}\)
\(=\dfrac{c}{abc\left(a+b\right)+c}=\dfrac{c}{a+b+c}\left(abc=1\right)\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(VT\le\dfrac{a+b+c}{a+b+c}=1=VP\)
Khi \(a=b=c=1\)
Cái này không khó :v
Áp dụng BĐT Cauchy-Schwarz dạng Engel, ta có:
\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{a+c}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)
Face khác ;v, theo AM-GM, ta có
\(\dfrac{a+b+c}{2}\ge\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\dfrac{6}{2}=3\)
Vậy ta có đpcm. Đẳng thức xảy ra khi a=b=c=2
Ta có :
\(\frac{a^2}{a+b}=\frac{a^2+ab-ab}{a+b}=a-\frac{ab}{a+b}\le a-\frac{ab}{2\sqrt{ab}}=a-\frac{\sqrt{ab}}{2}\)(1)
Tương tự \(\hept{\begin{cases}\frac{b^2}{b+c}\le b-\frac{\sqrt{bc}}{2}\\\frac{c^2}{a+c}\le c-\frac{\sqrt{ac}}{2}\end{cases}}\)(2)
Nhhan (1);(2) lại ta được
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{a+c}\ge a+b+c-\frac{\sqrt{ab}+\sqrt{ac}+\sqrt{bc}}{2}=a+b+c-3\)
Ta lại có : \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{bc}=6\) (tự cm)
\(\Rightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{a+c}\ge6-3=3\)(đpcm)