Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét \(\Delta\)HBA và \(\Delta\)ABC ta có :
\(\widehat{B}-chung\)
\(\widehat{BAC}=\widehat{BHA}\left(90^0\right)\)
\(\Rightarrow\Delta\)HBA đồng dạng với \(\Delta\)ABC(g.g)
b, Vì \(\Delta\)ABC vuông tại A => A = 90^0
Áp dụng đinh lí Py ta go ta đc :
\(BC^2=AB^2+AC^2\)
\(BC^2=12^2+16^2\)
\(BC^2=400\Leftrightarrow BC=20\)
Làm tiếp nhé.
a/ Xét tg HBA và tg ABC, có:
góc BHA = góc BAC = 90 độ
góc B chung
Suyra: tg HBA đồng dạng với tg ABC (g-g)
b/ Ta có tg ABC vuông tại A:
\(BC^2=AC^2+AB^2\)
\(BC^2=8^2+6^2=100\)
\(\Rightarrow BC=\sqrt{100}=10\)(cm)
Ta có: \(\frac{HA}{AC}=\frac{BA}{BC}\)(tg HBA đồng dạng với tg ABC)
\(\Rightarrow\frac{HA}{8}=\frac{6}{10}\)
\(\Rightarrow HA=\frac{8.6}{10}=4,8\left(cm\right)\)
a) Xét \(\Delta HBA\) và \(\Delta ABC\) có:
\(\widehat{AHB}=\widehat{CAB}=90^0\)
\(\widehat{ABC}\) CHỤNG
suy ra: \(\Delta HBA~\Delta ABC\)
b) Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\)\(BC^2=12^2+16^2=400\)
\(\Leftrightarrow\)\(BC=\sqrt{400}=20\)cm
Áp dụng hệ thức lượng trong tam giác vuông ta có:
\(AH=\frac{AB.AC}{BC}=\frac{12.16}{20}=9,6\)
\(BH=\frac{AB^2}{BC}=\frac{12^2}{20}=7,2\)
a) Xét \(\Delta HBA\)và \(\Delta ABC\)
ta có \(\widehat{AHB}=\widehat{CAB}\left(=90^0\right)\)
\(\widehat{ABC}\)chung
nên \(\Delta HBA\)\(\Delta ABC\)(g - g)
b) Xét \(\Delta ABC\)ta có
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=20\left(cm\right)\)
có \(\Delta HBA\)\(\Delta ABC\)
nên \(\frac{AH}{AC}=\frac{AB}{BC}\)và \(\frac{BH}{AB}=\frac{AB}{BC}\)
\(\Rightarrow AH=9,6\left(cm\right);BH=7,2\left(cm\right)\)
c) Xét \(\Delta ABC\)
có AD là phân giác
\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}=\frac{3}{4}\)
mà có BD + CD = BC = 20
nên BD = \(\frac{60}{7}\)
d)có AK + KH = AH
suy ra KH = 6 (cm)
có
A B C M N H E F O d
a) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=26\left(cm\right)\)
Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)
\(\Rightarrow AB.AC=AH.BC\)
\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{120}{13}\left(cm\right)\)
Áp dụng định lý Py-ta-go vào tam giác ABH vuông tại H ta đươc:
\(AH^2+HB^2=AB^2\)
\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\frac{50}{13}\left(cm\right)\)
b) Xét tam giác OMN có BC//MN (gt)
\(\Rightarrow\frac{OM}{OC}=\frac{ON}{OB}\)( định lý Ta-let) (1)
Xét tam giác OME có ME// NC ( vì ME//AC )
\(\Rightarrow\frac{OE}{ON}=\frac{OM}{OC}\)( định lý Ta-let) (2)
\(\Rightarrow\frac{ON}{OB}=\frac{OE}{ON}\)
\(\Rightarrow ON^2=OE.OB\left(đpcm\right)\)
bạn xem có sai đề ko ạ