Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có abc chia hết cho 27 thì abc0 chia hết cho 27.
-> a000 + bc0 chia hết cho 27
-> 1000.a +bc0 chia hết cho 27
-> 999.a + a + bc0 chia hết cho 27
-> 37 x 27 x a + bca chia hết cho 27
Do 37 x 27 x a chia hết cho 27 nên bca chia hết cho 27.
\(\overline{abc}⋮27\)
\(\Rightarrow\overline{abc0}⋮27\)
\(\Rightarrow\overline{1000a}+\overline{bc0}⋮27\)
\(\Rightarrow999a+a+\overline{bc0}⋮27\)
\(\Rightarrow27.37a+\overline{bca}⋮27\)
do 27.37a chia hết cho 27 suy ra \(\overline{bca}⋮27\)
\(a\), \(abc⋮37\Rightarrow cba⋮37\)
\(Ta\) \(có\) :
\(abc⋮37\Rightarrow100a+10b+c⋮37\)
\(abc⋮37\Rightarrow10abc⋮37\)
\(\Rightarrow1000a+100b+10c⋮37\)
\(\Rightarrow999a+\left(100b+10c+a\right)⋮37\)
=> \(999a+bca⋮37\)
\(Mà\) \(999a⋮37\)
\(\Rightarrow bca⋮37\)
\(\Rightarrowđpcm\)
\(b\)) \(Lại\) \(có\) : \(bca⋮37\) \(\left(cmt\right)\)
\(\Rightarrow10bca⋮37\)
\(\Rightarrow1000b⋮100c+10a+b⋮37\)
\(\Rightarrow999b+100c+10a+b⋮37\)
Mà \(999b⋮37\)
\(\Rightarrow999b⋮37\)
\(\Rightarrowđpcm\)
a, Ta có:
\(\overline{ab}+\overline{ba}=10a+b+10b+a=11\left(a+b\right)\)
=> ab + ba chia hết cho 11(đpcm)
b, Ta có:
\(\overline{ab}-\overline{ba}=10a+b-10b-a=9\left(a-b\right)\)
=> ab - ba chia hết cho 9 (a > b)(đpcm)
Chúc bạn học tốt!!!
Ta có : abc chia hết cho 27
=> 100.a + 10.b + c chia hết cho 27
=> 10. ( 100.a + 10.b + c ) chia hết cho 27
=> 1000.a + 100.b + 10.c chia hết cho 27
=> 999.a + ( 100.b + 10.c + a ) chia hết cho 27.
Mà 999.a chia hết cho 27 nên 100.b + 10.c + a chia hết cho 27
Hay bca chia hết cho 27.
Vậy bca chia hết cho 27.
abc \(⋮\)27
\(\Rightarrow\)10abc \(⋮\)27
hay abc0 \(⋮\)27
\(\Rightarrow\)1000a + bc0 \(⋮\)27
\(\Rightarrow\)999a + a + bc0 \(⋮\)27
vì 999a \(⋮\)27 nên a + bc0 \(⋮\)27 hay bca \(⋮\)27
abc chia hết cho 27 => abc chia hết cho 3 và 9 mà chia hết cho 9 thì chia hết cho 3 => a+b+c chia hết cho 3 và 9
vậy suy ra bca tổng của b+c+a = a+b+c và cũng chia hết cho 3 và 9 => nếu abc chia hết cho 27 thì bca cũng chia hết cho 27
vì abc chia hết cho 27, mà \(27=3^3\)=> abc phải chia hết cho 3
để abc chia hết cho 3 <=> a+b+c \(⋮\)3
do abc chia hết cho 3 phụ thuộc vào tổng các chữ số
=> \(abc⋮3\Rightarrow bca⋮3\)hay bca chia hết cho 27
abc chia hết cho 27
\(\Rightarrow\)( 100a + 10b + c ) chia hết cho 27
\(\Rightarrow\)10 . ( 100a + 10b + c ) chia hết cho 27
\(\Rightarrow\)1000a + 100b + 10c chia hết cho 27
\(\Rightarrow\)999a + ( 100b + 10c + a ) chia hết cho 27
Mà 999a chia hết cho 27 \(\Rightarrow\)bca chia hết cho 27 .