K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2017

A B C M N  

Xét tam gia ABM va ANC co:

  AB = AC(gt)

  \(\widehat{B}\) =\(\widehat{C}\) (gt)

BM =NC (gt)

=> \(\Delta\) ABM =\(\Delta\) ANC (C.G.C)

12 tháng 5 2018

7 tháng 9 2016

a) Có: AB=AM+BM

           AC=AN+NC

Mà AB=AC(gt) ; BM=NC(gt)

=>AM=AN

=>ΔAMN caan taij A

b) Có ΔABC cân tại A(gt)

=>\(\widehat{A}=180-2\widehat{B}=180-2\cdot50=180-30=50\)

Xét ΔANM cân tại A(gt)

=> \(\widehat{2ANM}=180-\widehat{A}=180-50=130\)

=>^ANM=65

c) Xét ΔABC cân tại A(gt)

=> \(\widehat{B}=\frac{180-\widehat{A}}{2}\)           (1)

Xét ΔANM cân tại A(cmt)

=> \(\widehat{AMN}=\frac{180-\widehat{A}}{2}\)     (2)

Từ (1)(2) suy ra:

^B=^AMN . Mà hai góc này ở vị trí soletrong

=>MN//BC

7 tháng 9 2016

a) Xét Δ ANB và Δ AMC có :

AB = AC (gt)

Góc BAN = Góc CAM ( chung Góc A )

Góc ANB = Góc ACM

Nên Δ ANB = Δ AMC ( g-c-g)

Ta có : Δ ANB = Δ AMC (cmt)

→ AN = AM ( 2 cạnh tương ứng )

Xét Δ AMN có : AN = AM → Δ ANM là Δ cân (dpcm)

b) Δ ABC cân tại A (gt)

\(\Rightarrow A=180^o-2B=180^o-30^o=50^o\)

Δ ANM cân tại A (gt)

\(\Rightarrow2ANM=180^O-A=180^O-50^O=130^O\)

\(\Rightarrow ANM=65^O\)

c) Xét Δ ANM cân tại A ( chứng minh a )

\(\Rightarrow AMN=ANM\) ( t/c Δ cân )

Xét Δ AMN có : góc ANM + AMN + NAM = 108 độ ( định lý tổng 3 góc trong một Δ )

\(\Rightarrow2ANM+NAM=180^o\)

\(\Rightarrow2ANM=180^o-NAM\left(1\right)\)

\(\Delta ABC\) có : \(ABC+ACB+BAC=180^O\) ( định lý tổng 3 góc trong một Δ )

\(\Rightarrow2ACB+BAC=180^0\)

\(\Rightarrow2ACB=180^o-BAC\left(2\right)\)

Từ (1) và (2) → \(ANM=ACB\) mà 2 góc này nằm ở vị trí đồng vị của 2 đoạn thẳng MN và BC cắt bởi BN → MN // BC (đpcm)

CHÚC BẠN HỌC TỐT !!!
ABCMN

 

 

a: Xét ΔABM vuông tại M và ΔACN vuông tại N có

AB=AC

\(\widehat{BAM}\) chung

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

b: Xét ΔAMN có AM=AN

nên ΔAMN cân tại A

21 tháng 1 2022

a) Xét tam giác BNC vuông tại N và tam giác CMB vuông tại M:

BC chung.

\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A).

=> Tam giác BNC = Tam giác CMB (cạnh huyền - góc nhọn).

=> BN = CM (2 cạnh tương ứng).

Ta có: AB = AN + BN; AC = AM + CM.

Mà AB = AC (Tam giác ABC cân tại A); BN = CM (cmt).

=> AM = AN.

b) Xét tam giác AMN: AM = AN (cmt).

=> Tam giác AMN cân tại A.

c) Xét tam giác ABC: 

BM; CN là đường cao (BM vuông góc với AC; CN vuông góc với AB).

I là giao điểm của BM và CN (gt).

=> I là trực tâm.

=> AI là đường cao.

Mà AI là đường cao xuất phát từ đỉnh A của tam giác ABC cân tại A.

=> AI là đường phân giác góc A (Tính chất các đường trong tam giác cân).

1 tháng 2 2017

a) Vì \(\Delta\)ABC cân tại A nên AB = AC và \(\widehat{ABC}\)= \(\widehat{ACB}\)

hay \(\widehat{ABN}\) = \(\widehat{ACM}\)

Ta có: BN + NM = BM

CM + NM = CN

mà BM = CN => BN = CM

Xét \(\Delta\)ABN và \(\Delta\)ACM có:

AB = AC (c/m trên)

\(\widehat{ABN}\) = \(\widehat{ACM}\) (c/m trên)

BN = CM (c/m trên)

=> \(\Delta\)ABN = \(\Delta\)ACM (c.g.c)

=> AN = AM (2 cạnh t/ư)

Do đó \(\Delta\)AMN cân tại A

b) Áp dụng tc tổng 3 góc trong 1 tg ta có:

\(\widehat{BAC}\) + \(\widehat{ABC}\) + \(\widehat{ACB}\) = 180o

=> 120o + \(\widehat{ABC}\) + \(\widehat{ACB}\) = 180o => \(\widehat{ABC}\) + \(\widehat{ACB}\) = 60o => \(\widehat{ABC}\) = \(\widehat{ACB}\) = 30o Vì AB = BM => \(\Delta\)ABM cân tại B => \(\widehat{BAM}\) = \(\widehat{BMA}\) Áp dụng tc tổng 3 góc trong 1 tg ta có:

\(\widehat{BAM}\) + \(\widehat{BMA}\) + \(\widehat{ABC}\) = 180o

=> \(\widehat{BAM}\) + \(\widehat{BMA}\) + 30o = 180o

=> \(\widehat{BAM}\) + \(\widehat{BMA}\) = 150o

=> \(\widehat{BAM}\) = \(\widehat{BMA}\) = 75o hay \(\widehat{AMN}\) = 75o

\(\Delta\)AMN cân tại A => \(\widehat{ANM}\) = \(\widehat{AMN}\) = 75o

Áp dụng tc tổng 3 góc trong 1 tg ta có:

\(\widehat{ANM}\) + \(\widehat{AMN}\) + \(\widehat{NAM}\) = 180o

=> 75o + 75o + \(\widehat{NAM}\) = 180o

=> \(\widehat{NAM}\) = 30o

c) \(\Delta\)AMN ko thể là tgv cân đc.

bài giải hay

Hình học lớp 7