Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-c\right)\left(b-a\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{1}{\left(a-b\right)\left(a-c\right)}-\frac{1}{\left(b-c\right)\left(a-b\right)}+\frac{1}{\left(a-c\right)\left(b-c\right)}\)
\(=\frac{b-c-a+c+a-b}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=0\)
(a - b)(a - c) + 1
= a(b - c) + 1
(b - c)(b - a) + 1
= b(c - a) + 1
(c - a)(c - b)
= c(a - b)
học tốt!
shorry! mình rất muốn giúp nhưng mình...... chưa học....^-^
\(\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}\)\(=\frac{\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc}{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}\)
\(=\frac{\left[\left(a+b\right)^3+c^3\right]-3abc\left(a+b+c\right)}{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}\)
\(=\frac{\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)}{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}\)\(=0\)(do a+b+c=0)
a) có \(a^3+b^3+c^3-3acb=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
\(=\left(a+b+c\right)\left(\left(a^2+b^2+c^2+2ab+2ac+2bc\right)-3ab-3ac-3bc\right)\)
\(=\left(a+b+c\right)\left(\left(a+b+c\right)^2-3\left(ac+ab+bc\right)\right)\)
\(=3\left(9-3\left(ac+ab+bc\right)\right)=9\left(3-ab-ac-bc\right)\)