![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a,Đặt a+b-c=x, c+a-b=y, b+c-a=z
=>x+y+z=a+b-c+c+a-b+b+c-a=a+b+c
Ta có hằng đẳng thức:
(x+y+z)^3-3x-3y-3z=3(x+y)(x+z)(y+z)
=>(a+b+c)^3-(b+c-a)^3-(a+c-b)^3-(a+b-c)^3=(x+y+z)^3-x^3-y^3-z^3
=3(x+y)(x+z)(y+z)
=3(a+b-c+c+a-b)(c+a-b+b+c-a)(b+c-a+a+b-c)
=3.2a.2b.2c
=24abc
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Câu hỏi của Nhàn Nguyễn - Toán lớp 8 - Học toán với OnlineMath
![](https://rs.olm.vn/images/avt/0.png?1311)
a+b+c+d=0
=>a+b=-(c+d)
=> (a+b)^3=-(c+d)^3
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d)
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d)
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d))
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
Ta có: \(a+b+c=0\Rightarrow a+b=-c\)
\(\Rightarrow\left(a+b\right)^3=\left(-c\right)^3\)
\(\Rightarrow a^3+b^3+3ab.\left(a+b\right)=-c^3\)
\(\Rightarrow a^3+b^3+3ab.\left(-c\right)=-c^3\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
(Còn nhiều cách nữa ,mình làm 1 cách nhé)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)
\(=\left[\left(a+b\right)^3+c^3+3c.\left(a+b\right).\left(a+b+c\right)\right]-a^3-b^3-c^3\)
\(=\left[a^3+b^3+3ab.\left(a+b\right)+c^3+3c.\left(a+b\right)\right]-a^3-b^3-c^3\)
\(=3ab.\left(a+b\right)+3c.\left(a+b\right)\left(a+b+c\right)=3.\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Áp dụng :
Đặt \(\left\{{}\begin{matrix}a+b-c=x\\a-b+c=y\\-a+b+c=z\end{matrix}\right.\) \(\Rightarrow x+y=z=a+b+c\)
Khi đó biểu thức trở thành :
\(\left(x+y+z\right)^3-x^3-y^3-z^3=3.\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
\(=3.2a.2b.2c=24abc\)
\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)
\(=ab^3-ac^3+bc^3-a^3b+c\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(=ab\left(b-a\right)\left(b+a\right)-c^3\left(a-b\right)+\left(a-b\right)\left(a^2c+abc+b^2c\right)\)
\(=\left(a-b\right)\left(a^2c+abc+b^2c-c^3-a^2b-ab^2\right)\)
\(=\left(a-b\right)\left[\left(a^2c-a^2b\right)+\left(abc-ab^2\right)+\left(b^2c-c^3\right)\right]\)
\(=\left(a-b\right)\left[-a^2\left(b-c\right)-ab\left(b-c\right)+c\left(b-c\right)\left(b+c\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(-a^2-ab+bc+c^2\right)\)
\(=\left(a-b\right)\left(b-c\right)\left[\left(c-a\right)\left(c+a\right)+b\left(c-a\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)