K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 7 2023

Yêu cầu đề là gì vậy bạn?

16 tháng 7 2023

phân tích đa thức thành phân tử nha                                                        quên mất không ghi đề =))

2 tháng 8 2020

Cho a = b = c = 1 vào thì đề sai

2 tháng 8 2020

Để ý phần mẫu \(2bc\le b^2+c^2\)

chắc hướng làm là như vậy @@

8 tháng 8 2020

anh là giởi nhất bảng sếp hạng mà còn ko làm được thì ai làm được

8 tháng 8 2020

Mk mà giỏi thì các bn thành god hết rồi ạ :(

25 tháng 8 2018

a) Biến đổi biểu thức ban đầu tương đương: 

4abc > a[ a² - (b-c)²] +b[b² - (a-c)²] +c[c² - (a-b)²] 

<=> 4abc > a(a+b-c)(a+c-b) + b(b+c-a)(b+a-c) + c(c+b-a)(c+a-b) 

Đến đây thì đặt ẩn phụ kiểu quen thuộc rồi ;) 

Đặt a+b-c = x ; b+c-a =y ; c+a-b =z (x,y,z > 0 ) Thì a= (x +z)/2 ; b= (x+y/2) ; c= (y+z)/2 

Biểu thức trở thành: 

(x+y)(y+z)(z+x) > (x+z)xz + (x+y)xy + (y+z)yz 

Đơn giản rồi ; biểu thức này tương đương 2xyz > 0 (đúng với a,b,c là 3 cạnh của 1 tam giác ;) 

*Mở rộng thêm: Còn chứng minh được a^3 +b^3 +c^3 +3abc >= a²(b+c) +b²(a+c) +c²(b+a) > a^3 +b^3 +c^3 +2abc với a,b,c là 3 cạnh của 1 tam giác ;)