Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Theo bài có : \(\sqrt{ab}=\frac{a+b}{a-b}\) (1) nên suy ra : \(\frac{a+b}{a-b}\ge0\)
Mà a+b > 0 do a,b là số thực dương nên suy ra : a-b > 0 hay a > b
Có : \(\sqrt{ab}=\frac{a+b}{a-b}\)
\(\Leftrightarrow\)ab = \(\frac{\left(a+b\right)^2}{\left(a-b\right)^2}\)=\(\frac{\left(a-b\right)^2+4ab}{\left(a-b\right)^2}\)= \(1+\frac{4ab}{\left(a-b\right)^2}\)
Ta có : P = ab + \(\frac{a-b}{\sqrt{ab}}\)= \(1+\frac{4ab}{\left(a-b\right)^2}\) + \(\frac{a-b}{2\sqrt{ab}}\)+ \(\frac{a-b}{2\sqrt{ab}}\) \(\ge\)4\(\sqrt[4]{1.\frac{4ab}{\left(a-b\right)^2}.\frac{a-b}{2\sqrt{ab}}.\frac{a-b}{2\sqrt{ab}}}\)= 4\(\sqrt[4]{1}\)= 4 ( theo BĐT Cô -si)
Dấu " = " xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{a-b}{2\sqrt{ab}}=1\\\frac{a-b}{2\sqrt{ab}}=\frac{4ab}{\left(a-b\right)^2}\\\frac{4ab}{\left(a-b\right)^2}=1\end{cases}}\) \(\Leftrightarrow a=b.\left(\sqrt{2}+1\right)^2\)
Thay a = b.\(\left(\sqrt{2}+1\right)^2\)vào (1) rồi tính ra ta được :\(\hept{\begin{cases}a=2+\sqrt{2}\\b=2-\sqrt{2}\end{cases}}\left(thỏamãn\right)\)
Vậy P min = 4 đạt được khi \(\hept{\begin{cases}a=2+\sqrt{2}\\b=2-\sqrt{2}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P=\frac{4a^2}{\sqrt{16b\left(b+15c\right)}}+\frac{4b^2}{\sqrt{16c\left(c+15a\right)}}+\frac{4c^2}{\sqrt{16a\left(a+15c\right)}}\)
\(\Rightarrow P\ge\frac{8a^2}{17b+15c}+\frac{8b^2}{17c+17a}+\frac{8c^2}{17a+15b}\)
\(\Rightarrow P\ge\frac{8\left(a+b+c\right)^2}{32\left(a+b+c\right)}=\frac{a+b+c}{4}\ge\frac{\sqrt{3\left(ab+bc+ca\right)}}{4}=\frac{\sqrt{3}}{4}\)
\(P_{min}=\frac{\sqrt{3}}{4}\) khi \(a=b=c=\frac{1}{\sqrt{3}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài toán số 41 có 2 cách làm, tôi làm cách thứ 2
Đặt \(Q=\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{x+z}}+\sqrt{\frac{z}{x+y}}\)\(\Rightarrow Q^2=\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}+2\left(\sqrt{\frac{xy}{\left(y+z\right)\left(x+z\right)}}+\sqrt{\frac{yz}{\left(x+z\right)\left(y+z\right)}}+\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\right)\)ta thấy rằng \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\frac{1}{4}\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)\left(xy+yz+zx\right)\)
\(=\frac{x^2+y^2+z^2}{4}+\frac{xyz}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge\frac{x^2+y^2+z^2}{4}\)
Áp dụng bất đẳng thức AM-GM ta có \(\sqrt{\frac{yx}{\left(z+x\right)\left(x+y\right)}}\ge\frac{2yx}{2\sqrt{\left(xy+yz\right)\left(yz+yx\right)}}\ge\frac{2xy}{2xy+yz+xz}\ge\frac{2xy}{2\left(xy+yz+zx\right)}=\frac{xy}{xy+yz+zx}\)
Tương tự ta có \(\hept{\begin{cases}\sqrt{\frac{yz}{\left(z+x\right)\left(z+y\right)}}\ge\frac{yz}{xy+yz+zx}\\\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\ge\frac{xz}{xy+yz+zx}\end{cases}}\)
\(\Rightarrow\sqrt{\frac{xy}{\left(y+z\right)\left(z+x\right)}}+\sqrt{\frac{yz}{\left(z+x\right)\left(x+y\right)}}+\sqrt{\frac{zx}{\left(x+y\right)\left(y+z\right)}}\ge1\)nên \(Q\ge\sqrt{\frac{x^2+y^2+z^2}{4}+2}\)
\(\Rightarrow Q\ge\sqrt{\frac{x^2+y^2+z^2}{2}+4}+\frac{4}{\sqrt{x^2+y^2+z^2}}\)
Đặt \(t=\sqrt{x^2+y^2+z^2}\Rightarrow t\ge\sqrt{xy+yz+zx}=2\)
Xét hàm số g(t)=\(\sqrt{\frac{t^2}{2}+4}+\frac{4}{t}\left(t\ge2\right)\)khi đó ta có
\(g'\left(t\right)=\frac{t}{2\sqrt{\frac{t^2}{2}+4}}-\frac{4}{t^2};g'\left(t\right)=0\Leftrightarrow t^6-32t^2-256=0\Leftrightarrow t=2\sqrt{2}\)
Lập bảng biến thiên ta có min[2;\(+\infty\)) \(g\left(t\right)=g\left(2\sqrt{2}\right)=3\sqrt{2}\)
Hay minS=\(3\sqrt{2}\)<=> a=c=1; b=2
Đặt a=xc; b=cy (x;y >=1)
- Thay x=1 vào giả thiết ta có \(\sqrt{b-c}=\sqrt{b}\Rightarrow c=0\) (không thỏa mãn vì c>0)
- Thay y=1 vào giả thiết ta có \(\sqrt{a-c}=\sqrt{a}\Rightarrow c=0\)( không thỏa mãn vì c>0)
- Xét x,y>1 thay vào giả thiết ta có
\(\sqrt{x-1}+\sqrt{y-1}=\sqrt{xy}\Leftrightarrow x+y-2+2\sqrt{\left(x-1\right)\left(y-1\right)}=xy\)
\(\Leftrightarrow xy-x-y+1-2\sqrt{\left(x-1\right)\left(y-1\right)}+1=0\)
\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(y-1\right)}-1\right)^2=0\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(y-1\right)}=1\Leftrightarrow xy=x+y\ge2\sqrt{xy}\Rightarrow xy\ge4\)
Biểu thức P được viết lại như sau
\(P=\frac{x}{y+1}+\frac{y}{x+1}+\frac{1}{x+y}+\frac{1}{x^2+y^2}=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}+\frac{1}{x^2+y^2}+\frac{1}{\left(x+y\right)^2-2xy}\)
\(P\ge\frac{\left(x+y\right)^2}{2xy+x+y}+\frac{1}{x+y}+\frac{1}{\left(x+y\right)^2-2xy}=\frac{xy}{3}+\frac{1}{xy}+\frac{1}{x^2y^2-2xy}=\frac{x^3y^3-2x^2y^2+3xy-3}{3\left(x^2y^2-2xy\right)}\)
Đặt t=xy với t>=4
Xét hàm số \(f\left(t\right)=\frac{t^3-2t^2+3t-3}{t^2-2t}\left(t\ge4\right)\)
Ta có \(f'\left(t\right)=\frac{t^4-4t^3+t^2+6t-6}{\left(t^2-2t\right)^2}=\frac{t^3\left(t-4\right)+6\left(t-4\right)+18}{\left(t^2-2t\right)^2}>0\forall t\ge4\)
Lập bảng biến thiên ta có \(minf\left(t\right)=f\left(4\right)=\frac{41}{8}\)
Vậy \(minP=\frac{41}{24}\)khi x=y=z=2 hay a=b=2c
![](https://rs.olm.vn/images/avt/0.png?1311)
5.
ĐKXĐ: \(0\le x\le1\)
\(P=\sqrt{1-x}+\sqrt{x}+\sqrt{1+x}+\sqrt{x}\)
\(P\ge\sqrt{1-x+x}+\sqrt{1+x+x}=1+\sqrt{1+2x}\ge2\)
\(\Rightarrow P_{min}=2\) khi \(x=0\)
6.
\(3=a^2+b^2+ab\ge2ab+ab=3ab\Rightarrow ab\le1\)
\(3=a^2+b^2+ab\ge-2ab+ab=-ab\Rightarrow ab\ge-3\)
\(\Rightarrow-3\le ab\le1\)
\(a^2+b^2+ab=3\Rightarrow a^2+b^2=3-ab\)
Ta có:
\(P=\left(a^2+b^2\right)^2-2a^2b^2-ab\)
\(P=\left(3-ab\right)^2-2a^2b^2-ab=-a^2b^2-7ab+9\)
Đặt \(ab=x\Rightarrow-3\le x\le1\)
\(P=-x^2-7x+9=21-\left(x+3\right)\left(x+4\right)\le21\)
\(\Rightarrow P_{max}=21\) khi \(x=-3\) hay \(\left(a;b\right)=\left(-\sqrt{3};\sqrt{3}\right)\) và hoán vị
\(P=-x^2-7x+9=1+\left(1-x\right)\left(x+8\right)\ge1\)
\(\Rightarrow P_{min}=1\) khi \(x=1\) hay \(a=b=1\)
1. \(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z+xy+yz+zx=6\)
\(\Leftrightarrow x+y+z+\frac{1}{3}\left(x+y+z\right)^2\ge6\)
\(\Leftrightarrow\left(x+y+z\right)^2+3\left(x+y+z\right)-18\ge0\)
\(\Leftrightarrow\left(x+y+z+6\right)\left(x+y+z-3\right)\ge0\)
\(\Leftrightarrow x+y+z\ge3\)
Vậy \(P=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\ge\frac{1}{3}.3^2=3\)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)
2. Áp dụng BĐT Bunhiacopxki:
\(Q^2\le3\left(2a+bc+2b+ac+2c+ab\right)\)
\(Q^2\le6\left(a+b+c\right)+3\left(ab+bc+ca\right)\)
\(Q^2\le6\left(a+b+c\right)+\left(a+b+c\right)^2=16\)
\(\Rightarrow Q\le4\Rightarrow Q_{max}=4\) khi \(a=b=c=\frac{2}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
P = ab + \(\frac{a-b}{\sqrt{ab}}\)
Thay a - b = \(\frac{a+b}{\sqrt{ab}}\)vào P
=> P = ab + \(\frac{a+b}{\sqrt{ab}\sqrt{ab}}\)
= ab + \(\frac{a+b}{ab}\)>= 2\(\sqrt{a+b}\)
Làm tiếp cứ đi vòng vòng mà không có lối ra.
không biết