\(\ge\)0; a\(^2\)+b\(^2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xin phép được sửa đề : CMR : \(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le6\)

Áp dụng BĐT cô - si ta có :

\(\left\{{}\begin{matrix}a\sqrt{3a\left(a+2b\right)}\le\frac{a\left(3a+a+2b\right)}{2}=a\left(2a+b\right)\\b\sqrt{3b\left(b+2a\right)}\le\frac{b\left(3b+b+2a\right)}{2}=b\left(2b+a\right)\end{matrix}\right.\)

\(\Rightarrow a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le2a^2+2ab+2b^2\)

Vậy ta cần chứng minh :

\(2a^2+2ab+2b^2\le6\Leftrightarrow a^2+ab+b^2\le3\)

Ta có : \(a^2+ab+b^2\le a^2+b^2+\frac{a^2+b^2}{2}=2+1=3\)

Vậy đẳng thức đã được chứng minh . Dấu \("="\) xảy ra khi \(a=b=1\)

15 tháng 6 2018

Bài 1:

Ta có: \(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}=\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\)

Áp dụng bđt Cauchy Schwarz có:

\(\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{a\sqrt{a^2+8bc}+b\sqrt{b^2+8bc}+c\sqrt{c^2+8bc}}\)

Lại sử dụng bđt Cauchy schwarz ta có:

\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}=\sqrt{a}\cdot\sqrt{a^3+8abc}+\sqrt{b}\cdot\sqrt{b^3+8abc}+\sqrt{c}\cdot\sqrt{c^3+8abc}\ge\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}\)

\(\Rightarrow\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}}=\sqrt{\dfrac{\left(a+b+c\right)^3}{a^3+b^3+c^3+24abc}}\)

=> Ta cần chứng minh: \(\left(a+b+c\right)^3\ge a^3+b^3+c^3+24abc\)

hay \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Áp dụng bđt Cosi ta có:

\(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\)

Nhân các vế của 3 bđt trên ta đc:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)

=> Đpcm

13 tháng 1 2019

3.

\(\dfrac{2a^2}{b^2}+2\dfrac{b^2}{c^2}+2\dfrac{c^2}{a^2}\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)

áp dụng bất đẳng thức cosi

+ \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\dfrac{a}{c}\)

......

tương tự với 2 cái sau

NV
16 tháng 2 2020

a/

\(a.1.\sqrt{b-1}+b.1.\sqrt{a-1}\le a\left(\frac{1+b-1}{2}\right)+b\left(\frac{1+a-1}{2}\right)=ab\)

Dấu "=" xảy ra khi \(a=b=2\)

b/ \(P=a+\frac{1}{\left(a+1\right)^2}=\frac{\left(a+1\right)}{8}+\frac{a+1}{8}+\frac{1}{\left(a+1\right)^2}+\frac{3a}{4}-\frac{1}{4}\)

\(P\ge3\sqrt[3]{\frac{\left(a+1\right)^2}{8^2.\left(a+1\right)^2}}+\frac{3.1}{4}-\frac{1}{4}=\frac{5}{4}\)

Câu b đề bài ko đúng (nếu như điều kiện thực sự là \(a\ge1\))

4 tháng 3 2020

mình sửa lại bài 3 ý a, \(\left|5x-3\right|< 2\)

NV
15 tháng 5 2020

\(\Leftrightarrow-x^2+2x+3+4\sqrt{-x^2+2x+3}\le m\)

Đặt \(\sqrt{-x^2+2x+3}=\sqrt{4-\left(x-1\right)^2}=t\Rightarrow0\le t\le2\)

BPT trở thành:

\(f\left(t\right)=t^2+4t\le m\)

Để BPT nghiệm đúng với mọi \(t\in\left[0;2\right]\)

\(\Leftrightarrow m\ge\max\limits_{\left[0;2\right]}f\left(t\right)=12\)

\(\Rightarrow m\ge12\)

9 tháng 5 2018

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT=\dfrac{1}{\sqrt{a}}+\dfrac{3}{\sqrt{b}}+\dfrac{8}{\sqrt{3c+2a}}\)

\(=\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}+\dfrac{2}{\sqrt{b}}+\dfrac{8}{\sqrt{3c+2a}}\)

\(\ge\dfrac{4}{\sqrt{a}+\sqrt{b}}+\dfrac{2\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}\)

\(=\dfrac{4}{\sqrt{a}+\sqrt{b}}+\dfrac{\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}+\dfrac{\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}\)

\(\ge\dfrac{\left(1+2+1+2+2\right)^2}{2\sqrt{3c+2a}+3\sqrt{b}+\sqrt{a}}\)

\(\ge\dfrac{64}{\sqrt{\left(1+2^2+3\right)\left(a+2a+3c+3b\right)}}\)

\(=\dfrac{64}{\sqrt{24\left(a+c+b\right)}}=\dfrac{16\sqrt{2}}{\sqrt{3\left(a+b+c\right)}}=VP\)

11 tháng 5 2018

sao lại bạn lại nghĩ ra cách tách như vậy?

15 tháng 11 2020

1)

\(2a+\frac{4}{a}+\frac{16}{a+2}=\left(a+\frac{4}{a}\right)+\left[\left(a+2\right)+\frac{16}{a+2}\right]-2\ge4+8-2=10\)

Dấu "=" xảy ra khi a=2

15 tháng 11 2020

2)

\(\hept{\begin{cases}\sqrt{a\left(1-4a\right)}=\frac{1}{2}\sqrt{4a\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4a+1-4a}{2}=\frac{1}{4}\\\sqrt{b\left(1-4b\right)}=\frac{1}{2}\sqrt{4\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4b+1-4b}{2}=\frac{1}{4}\\\sqrt{c\left(1-4c\right)}=\frac{1}{2}\sqrt{4c\left(1-4c\right)}\le\frac{1}{2}\cdot\frac{4c+1-4c}{2}=\frac{1}{4}\end{cases}}\)

\(\Rightarrow\sqrt{a\left(1-4a\right)}+\sqrt{b\left(1-4b\right)}+\sqrt{c\left(1-4c\right)}\le\frac{3}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{8}\)

18 tháng 12 2017

c) theo bđt cauchy ta có

\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+1\ge2b\\a^2+1\ge2a\end{matrix}\right.\)

cộng hết lại rút 2 đi \(\Rightarrowđpcm\)

18 tháng 12 2017

b)theo bđt bunhiacopxki ta có

\(\left(1^2+a^2\right)\left(1^2+b^2\right)\ge\left(1+ab\right)^2\)

\(\Rightarrowđpcm\)