Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:Xét (O) có
MF,ME là tiếp tuyến
Do đó: MF=ME
=>M nằm trên đường trung trực của FE(1)
OE=OF
=>O nằm trên đường trung trực của EF(2)
Từ (1) và (2) suy ra OM là đường trung trực của EF
=>OM\(\perp\)EF tại H và H là trung điểm của EF
b: ΔOMF vuông tại F
=>\(FO^2+FM^2=OM^2\)
=>\(FM^2=10^2-6^2=64\)
=>\(FM=\sqrt{64}=8\left(cm\right)\)
Xét ΔOFM vuông tại F có FH là đường cao
nên \(OH\cdot OM=OF^2\)
\(\Leftrightarrow OH\cdot10=6^2=36\)
=>OH=36/10=3,6(cm)
c: Xét tứ giác BHMA có
\(\widehat{BHM}+\widehat{BAM}=90^0+90^0=180^0\)
=>BHMA là tứ giác nội tiếp
=>B,H,M,A cùng thuộc một đường tròn
Trả lời :
Bn Nguyễn Tũn bảo dễ ẹt thì làm đi.
- Hok tốt !
^_^
a) Dễ thấy tg AOB ~ tg COI => OA/OC = OB/OI => OA.OI = OB.OC = R^2 (1)
b)
Trong (O) : ^CED = ^CBD ( cùng chắn cung CD) hay ^CEK = ^CAB (2)
Trong (ABC) : ^CIA = ^CAB (cùng chắn cung CA) hay ^CIK = ^CAB (3)
Từ (2) và (3) => ^CEK = ^CIK => CEIK nội tiếp
Vì CEKI nội tiếp => AK.AI = AC.AE (4)
Mà trong (O) có cát tuyến ACE nên có hệ thức : AC.AE = OA^2 - R^2 = 4R^2 - R^2 = 3R^2 (5)
Mặt khác từ (1) => OI = R^2/OA = R^2/2R = R/2 => AI = OA + OI = 2R + R/2 = 5R/2 (6)
Từ (4) ; (5); (6) => AK = AC.AE/AI = 3R^2/(5R/2) = 6R/5
c) OA cắt (O) tại M, N (M nằm giữa A và K) =>
MK = AK - AM = 6R/5 - R = R/5
NK = AN - AK = 3R - 6R/5 = 9R/5
Vì EMDN nội tiếp (O) nên tương tự câu a) ta có : DK.EK = MK.NK = 9R^2/25 (7)
Mặt khác nếu trên đoạn OK lấy J sao cho JK = 3R/10 => J cố định và AK.JK = (6R/5).(3R/10) = 9R^2/25 (8)
Từ (7) và (8) => AK.JK = DK.EK => ADJE nội tiếp hay đường tròn ngoại tiếp tg ADE luôn đi qua AJ hay tâm của có luôn chạy trên đường thẳng trung trực của đoạn AJ cố định xác định như trên
Lấy C trên đoạn OA sao cho OC=R/2 => C cố định
Tam giác OCM đồng dạng với tam giác OMA (c.g.c) ⇒MAMC=OAOM=2⇒MA=2MC⇒MA+2MB=2(MB+MC)≥2BC⇒MAMC=OAOM=2⇒MA=2MC⇒MA+2MB=2(MB+MC)≥2BC (B, C cố định nên BC không đổi)
Khi đó M là giao của BC va đường tròn O (M nằm giữa BC). Do C nằm trong đường tròn O, B nằm ngoài đường tròn O nên luôn luôn tồn tại duy nhất điểm M thỏa mãn