K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2017

A=a^3+2a^2-1/a^3+2a^2+2a+1

  =a^3+a^2+a^2+a-a-1/a^3+a^2+a^2+a+a+1

 =a^2(a+1)+a.(a+1)-(a+1)/a^2(a+1)+a(a+1)+(a-1)

 =(a+1)(a^2+a-1)/(a+1)(a^2+a+1)

 =a^2+a-1/a^2+a+1 

với điều kiên.a khác -1

24 tháng 3 2018

hazzz bài này mk biết làm rùi 

chỉ so kết quả với các bn thui

2 tháng 2 2018

Ta có \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)

\(=\frac{a^3+2a^2+2a+1-2a-2}{a^3+2a^2+2a+1}\)

\(=\frac{a^3+2a^2+2a+1}{a^3+2a^2+2a+1}-\frac{2a-2}{a^3+2a^2+2a+1}\)

\(=1-\frac{2a-1}{a^3+2a^2+2a+1}\)

2 tháng 5 2016

\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^3+a^2+a^2-1}{a^3+a^2+a^2+a+a+1}=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}\)

\(A=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right).\left(a^2+a-1\right)}{\left(a+1\right).\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

Vậy \(A=\frac{a^2+a-1}{a^2+a+1}\)

2 tháng 5 2016

1 8892219

29 tháng 11 2019

Ta có:

A = \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)

A = \(\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+1\right)+\left(2a^2+2a\right)}\)

A = \(\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{\left(a+1\right)\left(a^2-a+1\right)+2a\left(a+1\right)}\)

A = \(\frac{\left(a^2+a-1\right)\left(a+1\right)}{\left(a+1\right)\left(a^2-a+1+2a\right)}\)

A = \(\frac{a^2+a-1}{a^2+a+1}\)

17 tháng 1 2016

=\(\frac{a^3+a^2+a^2-1}{a^3+a^2+a^2+a+a+1}=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

9 tháng 5 2016

\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^3+a^2+a^2-1}{a^3+a^2+a^2+a+a+1}=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}\)

\(A=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right).\left(a^2+a-1\right)}{\left(a+1\right).\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

Vậy A=..................

9 tháng 5 2016

A=\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)

A=\(\frac{a^3+2a^2+1-2}{a^3+2a^2+1+2a^2}\)

A=\(\frac{a^3+2a^2+1}{a^3+2a^2+1}+\frac{-2}{a^3+2a^2+1+2a^2}\)

A=\(1+\frac{-2}{a^3+2a^2+1+2a^2}\)