K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2016

khiếp,ít ít thôi, t giải phụ chứ nhìn lóa mắt quá

AH
Akai Haruma
Giáo viên
2 tháng 7 2018

Lời giải:

\(A=x^2-5x+5\)

\(=x^2-2.\frac{5}{2}x+(\frac{5}{2})^2-\frac{5}{4}\)

\(=\left(x-\frac{5}{2}\right)^2-\frac{5}{4}\)

\((x-\frac{5}{2})^2\geq 0, \forall x\in\mathbb{R}\Rightarrow A=(x-\frac{5}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}\)

Vậy \(A_{\min}=-\frac{5}{4}\). Dấu bằng xảy ra khi \(x=\frac{5}{2}\)

--------------

\(B=x^2-3x+1\)

\(=x^2-2.\frac{3}{2}x+(\frac{3}{2})^2-\frac{5}{4}\)

\(=(x-\frac{3}{2})^2-\frac{5}{4}\)

\((x-\frac{3}{2})^2\geq 0, \forall x\in\mathbb{R}\Rightarrow B\geq 0-\frac{5}{4}=-\frac{5}{4}\)

Vậy \(B_{\min}=\frac{-5}{4}\Leftrightarrow x=\frac{3}{2}\)

AH
Akai Haruma
Giáo viên
2 tháng 7 2018

\(C=3x^2-6x+8\)

\(=3(x^2-2x+1)+5\)

\(=3(x-1)^2+5\)

\((x-1)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow C\geq 3.0+5=5\)

Do đó \(C_{\min}=5\Leftrightarrow x=1\)

----------------

\(D=7x^2+21x+3\)

\(=7[x^2+3x+(\frac{3}{2})^2]-\frac{51}{4}\)

\(=7[x^2+2.\frac{3}{2}.x+(\frac{3}{2})^2]-\frac{51}{4}=7(x+\frac{3}{2})^2-\frac{51}{4}\)

\((x+\frac{3}{2})^2\geq 0, \forall x\in\mathbb{R}\Rightarrow D\geq 7.0-\frac{51}{4}=\frac{-51}{4}\)

Vậy \(D_{\min}=-\frac{51}{4}\Leftrightarrow x=\frac{-3}{2}\)

26:

A=12x^2+10x-6x-5-(12x^2-8x+3x-2)

=12x^2+4x-5-12x^2+5x+2

=9x-3

Khi x=-2 thì A=-18-3=-21

25:

b: \(\left(y-3\right)\left(y^2+y+1\right)-y\left(y^2-2\right)\)

=y^3+y^2+y-3y^2-3y-3-y^3+2y

=-2y^2-3