Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left[\frac{878787}{959595}+\left(-\frac{8787}{9595}\right)\right]\times\frac{1234321}{5678765}=\left[\frac{87}{95}+\left(-\frac{87}{95}\right)\right]\times\frac{1234321}{5678765}=0\times\frac{1234321}{5678765}=0\)
\(A=\left(\frac{878787}{959595}-\frac{8787}{9595}\right).\frac{1234321}{5678765}\)
\(=\left(\frac{87}{95}-\frac{87}{95}\right).\frac{1234321}{5678765}\)
\(=0.\frac{1234321}{5678765}\)
\(=0\)
\(A=\left(\frac{878787}{959595}+\frac{-8787}{9595}\right).\frac{1234321}{5678765}\)
\(=\left(\frac{87.10101}{95.10101}-\frac{87.101}{95.101}\right).\frac{1234321}{5678765}\)
\(=\left(\frac{87}{95}-\frac{87}{95}\right).\frac{1234321}{5678765}\)
= 0
\(A=\left(\frac{87}{95}+\frac{-87}{95}\right).\frac{1234321}{5678765}\)
=>\(A=0.\frac{1234321}{5678765}\)
=>A=0
A= \(\left(\frac{878787}{959595}+-\frac{8787}{9595}\right).\frac{1234321}{5678765}\)
A= \(\left(\frac{87}{95}+\frac{-87}{95}\right).\frac{1234321}{5678765}\)
A= \(0.\frac{1234321}{5678765}\)
A= 0
\(A=\left(\frac{878787}{959595}+-\frac{8787}{9595}\right).\frac{1234231}{5678765}\)
\(=\left(\frac{87}{95}+-\frac{87}{95}\right).\frac{1234231}{5678765}\)
\(=0.\frac{1234231}{5678765}=0\)
Ta có :
\(A=\left(\frac{878787}{959595}+\frac{-8787}{9595}\right)\)\(.\frac{1234231}{5678765}\)
\(A=\left(\frac{878787\div10101}{959595\div10101}-\frac{8787\div101}{9595\div101}\right)\)\(.\frac{1234231}{5678765}\)
\(A=\left(\frac{87}{95}-\frac{87}{95}\right)\)\(.\frac{1234231}{5678765}\)
\(A=0.\frac{1234231}{5678765}\)
\(A=0\)
Vậy A=0 .
(878787/959595 + -8787/9595) x 1234321/5678765
=(87/95+ -87/95)x 1234321/5678765
=87+(-87)/95x 1234321/5678765
=0x1234321/5678765
=0
A=\(\frac{10^8+2}{10^8-1}=1+\frac{3}{10^8-1}\)
\(B=\frac{10^8}{10^8-3}=1+\frac{3}{10^8-3}\)
Vì\(10^8-1>10^8-3\)
\(\Rightarrow\frac{3}{10^8-1}< \frac{3}{10^8-3}\)
\(\Rightarrow1+\frac{3}{10^8-1}< 1+\frac{3}{10^8-3}\)
Vậy \(A< B\)