![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x:y:z=3:4:5\)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Rightarrow x=3k;y=4k;z=5k\)
Khi đó:\(5z^2-3x^2-2y^2=594\) trở thành:
\(5\cdot25k^2-3\cdot9k^2-2\cdot16k^2=594\)
\(125k^2-27k^2-32k^2=594\)
\(66k^2=594\)
\(k^2=9\)
\(k=\pm3\)
Bạn thay vào rồi tính
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}\)
Áp dụng dãy tỉ số bằng nhau:
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{x^2-y^2}{4-9}=-\frac{20}{-5}=4\)
=> \(\frac{y^2}{9}=4\Rightarrow y^2=36\Rightarrow y=\pm6\)
+) Với y = 6 => \(\frac{x}{2}=\frac{6}{3}=2\Rightarrow x=4\)và \(\frac{z}{5}=\frac{y}{4}=\frac{6}{4}\Rightarrow z=\frac{15}{2}\)
+) Với y =-6 => \(\frac{x}{2}=\frac{-6}{3}=-2\Rightarrow x=-4\) và \(\frac{z}{5}=\frac{y}{4}=\frac{-6}{4}\Rightarrow z=\frac{-15}{2}\)
Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{x^2}{64}=\frac{y^2}{144}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}=\frac{y^2}{144}=\frac{z^2}{225}\)
\(\Rightarrow\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}=\frac{x^2-y^2}{64-144}=\frac{-20}{-80}=\frac{1}{4}\)
\(\Rightarrow\frac{x^2}{64}=\frac{1}{4}\rightarrow x^2=4\rightarrow x=\pm2\)
\(\frac{y^2}{144}=\frac{1}{4}\rightarrow y^2=36\rightarrow y=\pm6\)
\(\frac{z^2}{225}=\frac{1}{4}\rightarrow z^2=56,25\rightarrow z=\pm7,5\)
Vậy \(\left(x;y;z\right)=\left(2;6;7,5\right);\left(-2;-6;-7,5\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) xlđ
b) Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) => \(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y-3z}{2+6-12}=\frac{-20}{-4}=5\)
=> \(\hept{\begin{cases}\frac{x}{2}=5\\\frac{y}{3}=5\\\frac{z}{4}=5\end{cases}}\) => \(\hept{\begin{cases}x=5.2=10\\y=5.3=15\\z=5.4=20\end{cases}}\)
Vậy ...
c) tt
![](https://rs.olm.vn/images/avt/0.png?1311)
2a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy x,y,z lần lượt là 20; 12; 42
#)Giải :
Bài 2 :
d) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)
\(\Rightarrow2k.3k.5k=810\)
\(\Rightarrow30k^3=810\)
\(\Rightarrow k^3=3\)
\(\Rightarrow k=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{5}=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\x=9\\x=15\end{cases}}}\)
Vậy x = 6; y = 9; z = 15
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(\frac{z}{5}=\frac{x}{2}=\frac{y}{3}=\frac{x.y-z}{2.3-5}=\frac{810}{1}=810\)
Từ \(\frac{x}{2}=810=>x=810.2=1620\)
Từ \(\frac{y}{3}=810=>y=2430\)
Từ \(\frac{z}{5}=810=>z=810.5=4050\)
Vậy x=1620
y=2430
z=4050