Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}=\dfrac{a+b+a-b}{c+a+c-a}=\dfrac{a}{c}\) (T/c dãy tỷ số = nhau)
\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a}{c}\Rightarrow c\left(a+b\right)=a\left(c+a\right)\)
\(\Rightarrow ac+bc=ac+a^2\Rightarrow a^2=bc\)
\(\Leftrightarrow6x-3y=2x+2y\)
\(\Leftrightarrow4x=5y\)
Vậy: Chọn D
\(\dfrac{2x-y}{x+y}=\dfrac{2}{3}\Leftrightarrow3\left(2x-y\right)=2\left(x+y\right)\\ \Leftrightarrow6x-3y=2x+2y\\ \Leftrightarrow4x=5y\Leftrightarrow\dfrac{x}{y}=\dfrac{5}{4}\left(D\right)\)
a) ta có: \(a:b:c=5:4:3\Rightarrow\frac{a}{5}=\frac{b}{4}=\frac{c}{3}\)
ADTCDTSBN
...
b) ta có: \(\frac{a}{4}=\frac{b}{5}=\frac{c}{2}=\frac{a}{4}=\frac{b}{5}=\frac{3c}{6}\)
ADTCTDSBN
...
c) ta có: \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\)
ADTCDTSBN
...
d) bn xem lại đề giúp mk nha
a) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{3}\right)^2=\dfrac{x.y}{2.3}=\dfrac{54}{6}=9\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=36\\y^2=81\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\pm6\\y=\pm9\end{matrix}\right.\)
b) \(\dfrac{x}{5}=\dfrac{y}{3}\Rightarrow\left(\dfrac{x}{5}\right)^2=\left(\dfrac{y}{3}\right)^2=\dfrac{x^2-y^2}{5^2-3^2}=\dfrac{4}{16}=\dfrac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{25}{4}\\y^2=\dfrac{9}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm\dfrac{5}{2}\\y=\pm\dfrac{3}{2}\end{matrix}\right.\)
c: Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\)
nên \(\dfrac{x}{10}=\dfrac{y}{15}\)
Ta có: \(\dfrac{y}{5}=\dfrac{z}{7}\)
nên \(\dfrac{y}{15}=\dfrac{z}{21}\)
mà \(\dfrac{x}{10}=\dfrac{y}{15}\)
nên \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{92}{46}=2\)
Do đó: x=20; y=30; z=42
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
Áp dụng t.c của dãy tỉ só bằng nhau,ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y}{3+4}=\dfrac{16}{7}\)
=>\(x=\dfrac{16}{7}.3=\dfrac{48}{7}\)
\(y=\dfrac{16}{7}.4=\dfrac{64}{7}\)
\(z=\dfrac{16}{7}.5=\dfrac{80}{7}\)
Vậy...
Các câu sau tương tự
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x^2+y^2}{2^2+3^2}=\frac{52}{13}=4\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=4\\\frac{y}{3}=4\\\frac{z}{4}=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\y=12\\z=16\end{matrix}\right.\)
\(A=3x^2y^3-5x^2+3x^3y^2\)
bậc 5, hệ số 3
bạn xem lại đề B nhé