Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{8\sqrt{41}}{\sqrt{45+4\sqrt{41}}+\sqrt{45-4\sqrt{41}}}\)
\(P=\dfrac{8\sqrt{41}}{\sqrt{\left(\sqrt{41}+2\right)^2}+\sqrt{\left(\sqrt{41}-2\right)^2}}\)
\(P=\dfrac{8\sqrt{41}}{\sqrt{41}+2+\sqrt{41}-2}=\dfrac{8\sqrt{41}}{2\sqrt{41}}=4\)
*P/S: đã nhỡ làm câu a, câu b bạn Phùng Khánh Linh làm rồi :)
\(P=\dfrac{8\sqrt{41}}{\sqrt{45+4\sqrt{41}}+\sqrt{45-4\sqrt{41}}}=\dfrac{8\sqrt{41}}{\sqrt{41+2.2\sqrt{41}+4}+\sqrt{41-2.2\sqrt{41}+4}}=\dfrac{8\sqrt{41}}{2\sqrt{41}}=4\) \(Q=\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}=\dfrac{2\sqrt{2}+\sqrt{6}}{2+\sqrt{3+2\sqrt{3}+1}}+\dfrac{2\sqrt{2}-\sqrt{6}}{2-\sqrt{3-2\sqrt{3}+1}}=\dfrac{\left(2\sqrt{2}+\sqrt{6}\right)\left(3-\sqrt{3}\right)+\left(2\sqrt{2}-\sqrt{6}\right)\left(3+\sqrt{3}\right)}{9-3}=\dfrac{6\sqrt{2}-2\sqrt{6}+3\sqrt{6}-\sqrt{18}+6\sqrt{2}+2\sqrt{6}-3\sqrt{6}-\sqrt{18}}{6}=\dfrac{12\sqrt{6}-6\sqrt{2}}{6}=\dfrac{6\sqrt{2}}{6}=\sqrt{2}\)
\(\frac{8\sqrt{41}}{\sqrt{45+4\sqrt{41}+\sqrt{45-\sqrt{41}}}}:\left(\sqrt{3}-\sqrt{2}\right)\) ( đề)
\(=\frac{8\sqrt{41}}{\sqrt{41}+2-\sqrt{41}-2}:\left(\sqrt{3}-\sqrt{2}\right)\)
\(=2\sqrt{41}:\left(\sqrt{3}-\sqrt{2}\right)\)
\(=2\sqrt{123}+2\sqrt{82}\)
vậy.....................
\(A=\frac{8\sqrt{41}}{\sqrt{\sqrt{41}^2+2.2.\sqrt{41}+2^2}+\sqrt{\sqrt{41}^2-2.2.\sqrt{41}+2^2}}.\frac{1}{\sqrt{3}-\sqrt{2}}\)
\(=\frac{8\sqrt{41}}{\sqrt{\left(\sqrt{41}+2\right)^2}+\sqrt{\left(\sqrt{41}-2\right)^2}}.\frac{\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}\)
\(=\frac{8\sqrt{41}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{41}+2+\sqrt{41}-2}=\frac{8\sqrt{41}\left(\sqrt{3}+\sqrt{2}\right)}{2\sqrt{41}}=4\left(\sqrt{3}+\sqrt{2}\right)\)
a) \(\sqrt{\dfrac{2-\sqrt{3}}{2}}+\dfrac{1-\sqrt{3}}{2}\)
= \(\sqrt{\dfrac{4-2\sqrt{3}}{4}}+\dfrac{1-\sqrt{3}}{2}\)
= \(\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{2}+\dfrac{1-\sqrt{3}}{2}\)
= \(\dfrac{\sqrt{3}-1+1-\sqrt{3}}{2}\)
= 0
b) \(\sqrt{41+6\sqrt{6}-12\sqrt{10}-4\sqrt{15}}+2\sqrt{5}-\sqrt{3}\)
= \(\sqrt{18+20+3+2\sqrt{54}-2\sqrt{360}-2\sqrt{60}}+2\sqrt{5}-\sqrt{3}\)
= \(\sqrt{\left(\sqrt{18}-\sqrt{20}+\sqrt{3}\right)^2}+2\sqrt{5}-\sqrt{3}\)
= \(\sqrt{18}-2\sqrt{5}+\sqrt{3}+2\sqrt{5}-\sqrt{3}\)
= \(\sqrt{18}\)
\(1.\sqrt{\left(5+\sqrt{7}\right)^2}-\sqrt{8-2\sqrt{7}}=5+\sqrt{7}-\sqrt{7-2\sqrt{7}+1}=5+\sqrt{7}-\sqrt{7}+1=6\)
\(2.\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{4-2\sqrt{3}}=\sqrt{3}+1-\sqrt{3-2\sqrt{3}+1}=\sqrt{3}+1-\sqrt{3}+1=2\)
\(3.VT=\sqrt{11}-\sqrt{20-6\sqrt{11}}=\sqrt{11}-\sqrt{11-2.3\sqrt{11}+9}=\sqrt{11}-\sqrt{11}+3=3=VP\)
Vậy , đẳng thức được chứng minh .
\(4.VT=\sqrt{41+12\sqrt{5}}-\sqrt{41-12\sqrt{5}}=\sqrt{36+2.6\sqrt{5}+5}-\sqrt{36-2.6\sqrt{5}+5}=6+\sqrt{5}-6+\sqrt{5}=2\sqrt{5}=VP\)
Vậy , đẳng thức được chứng minh .
\(\sqrt{\left(2\sqrt{2}-3\right)^2}+2\sqrt{2}=\left|2\sqrt{2}-3\right|+2\sqrt{2}=3-2\sqrt{2}+2\sqrt{2}=3\)
\(\sqrt{\left(\sqrt{10}-3\right)^2}+\sqrt{\left(\sqrt{10}-4\right)^2}=\left|\sqrt{10}-3\right|+\left|\sqrt{10}-4\right|\)
\(=\sqrt{10}-3+4-\sqrt{10}=1\)
\(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}=\sqrt{\left(\sqrt{3}+2\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\left|\sqrt{3}+2\right|-\left|2-\sqrt{3}\right|=\sqrt{3}+2-2+\sqrt{3}=2\sqrt{3}\)
\(\sqrt{41-12\sqrt{5}}-\sqrt{41+12\sqrt{5}}=\sqrt{\left(6-\sqrt{5}\right)^2}-\sqrt{\left(6+\sqrt{5}\right)^2}\)
\(=6-\sqrt{5}-6-\sqrt{5}=-2\sqrt{5}\)
\(A=\sqrt{49a^2}+3a=7\left|a\right|+3a\)
Nếu \(a\ge0\)thì: \(A=7a+3a=10a\)
Nếu \(a< 0\)thì: \(A=-7a+3a=-4a\)
\(B=3\sqrt{9a^6}-6a^3=9\left|a^3\right|-6a^3\)
Nếu \(a\ge0\)thì: \(B=9a^3-6a^3=3a^3\)
Nếu \(a< 0\)thì: \(B=-9a^3-6a^3=-15a^3\)
\(a,=4\sqrt{6}-15\sqrt{6}+\sqrt{\left(2+\sqrt{6}\right)^2}=-11\sqrt{6}+2+\sqrt{6}=2-10\sqrt{6}\\ b,=\dfrac{\sqrt{3}\left(\sqrt{6}-2\right)}{\sqrt{6}-2}+\dfrac{4\left(\sqrt{3}-1\right)}{2}+\left|3\sqrt{3}-12\right|=\sqrt{3}+2\sqrt{3}-2+12-3\sqrt{3}=10\)
Dùng lệnh tex ( đề bài )
\(A=(4\sqrt{2}+3).\sqrt{41-24\sqrt{2}}\)
\(A=\left(4\sqrt{2}+3\right).\sqrt{9+2.3.4\sqrt{2}+32}\)
\(A=\left(4\sqrt{2}+3\right).\sqrt{\left(3+4\sqrt{2}\right)^2}\)
\(A=\left(4\sqrt{2}+3\right).\left(4\sqrt{2}+3\right)\)
\(A=\left(4\sqrt{2}+3\right)^2\)